{"title":"A new mathematical model of multi-faced COVID-19 formulated by fractional derivative chains.","authors":"Ibtisam Aldawish, Rabha W Ibrahim","doi":"10.1186/s13662-022-03677-w","DOIUrl":null,"url":null,"abstract":"<p><p>It has been reported that there are seven different types of coronaviruses realized by individuals, containing those responsible for the SARS, MERS, and COVID-19 epidemics. Nowadays, numerous designs of COVID-19 are investigated using different operators of fractional calculus. Most of these mathematical models describe only one type of COVID-19 (infected and asymptomatic). In this study, we aim to present an altered growth of two or more types of COVID-19. Our technique is based on the ABC-fractional derivative operator. We investigate a system of coupled differential equations, which contains the dynamics of the diffusion between infected and asymptomatic people. The consequence is accordingly connected with a macroscopic rule for the individuals. In this analysis, we utilize the concept of a fractional chain. This type of chain is a fractional differential-difference equation combining continuous and discrete variables. The existence of solutions is recognized by formulating a matrix theory. The solution of the approximated system is shown to have a minimax point at the origin.</p>","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in continuous and discrete models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13662-022-03677-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It has been reported that there are seven different types of coronaviruses realized by individuals, containing those responsible for the SARS, MERS, and COVID-19 epidemics. Nowadays, numerous designs of COVID-19 are investigated using different operators of fractional calculus. Most of these mathematical models describe only one type of COVID-19 (infected and asymptomatic). In this study, we aim to present an altered growth of two or more types of COVID-19. Our technique is based on the ABC-fractional derivative operator. We investigate a system of coupled differential equations, which contains the dynamics of the diffusion between infected and asymptomatic people. The consequence is accordingly connected with a macroscopic rule for the individuals. In this analysis, we utilize the concept of a fractional chain. This type of chain is a fractional differential-difference equation combining continuous and discrete variables. The existence of solutions is recognized by formulating a matrix theory. The solution of the approximated system is shown to have a minimax point at the origin.