非光滑凸优化的快速连续时间方法。

IF 2.3 Q1 MATHEMATICS
Radu Ioan Boţ, Mikhail A Karapetyants
{"title":"非光滑凸优化的快速连续时间方法。","authors":"Radu Ioan Boţ,&nbsp;Mikhail A Karapetyants","doi":"10.1186/s13662-022-03744-2","DOIUrl":null,"url":null,"abstract":"<p><p>In a Hilbert setting, we study the convergence properties of the second order in time dynamical system combining viscous and Hessian-driven damping with time scaling in relation to the minimization of a nonsmooth and convex function. The system is formulated in terms of the gradient of the Moreau envelope of the objective function with a time-dependent parameter. We show fast convergence rates for the Moreau envelope, its gradient along the trajectory, and also for the system velocity. From here, we derive fast convergence rates for the objective function along a path which is the image of the trajectory of the system through the proximal operator of the first. Moreover, we prove the weak convergence of the trajectory of the system to a global minimizer of the objective function. Finally, we provide multiple numerical examples illustrating the theoretical results.</p>","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758112/pdf/","citationCount":"4","resultStr":"{\"title\":\"A fast continuous time approach with time scaling for nonsmooth convex optimization.\",\"authors\":\"Radu Ioan Boţ,&nbsp;Mikhail A Karapetyants\",\"doi\":\"10.1186/s13662-022-03744-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a Hilbert setting, we study the convergence properties of the second order in time dynamical system combining viscous and Hessian-driven damping with time scaling in relation to the minimization of a nonsmooth and convex function. The system is formulated in terms of the gradient of the Moreau envelope of the objective function with a time-dependent parameter. We show fast convergence rates for the Moreau envelope, its gradient along the trajectory, and also for the system velocity. From here, we derive fast convergence rates for the objective function along a path which is the image of the trajectory of the system through the proximal operator of the first. Moreover, we prove the weak convergence of the trajectory of the system to a global minimizer of the objective function. Finally, we provide multiple numerical examples illustrating the theoretical results.</p>\",\"PeriodicalId\":72091,\"journal\":{\"name\":\"Advances in continuous and discrete models\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9758112/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in continuous and discrete models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-022-03744-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in continuous and discrete models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13662-022-03744-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

在Hilbert条件下,研究了具有时间标度的二阶粘性和hessian驱动阻尼时间动力系统与非光滑凸函数最小化的收敛性。该系统是用目标函数的莫罗包络的梯度表示的,其参数与时间有关。我们展示了莫罗包络的快速收敛速率,它沿轨迹的梯度,以及系统速度。从这里,我们推导出目标函数沿路径的快速收敛速率,该路径是系统轨迹的图像,通过第一个算子的近端算子。此外,我们还证明了系统轨迹对目标函数的全局最小值的弱收敛性。最后,我们提供了多个数值例子来说明理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A fast continuous time approach with time scaling for nonsmooth convex optimization.

A fast continuous time approach with time scaling for nonsmooth convex optimization.

In a Hilbert setting, we study the convergence properties of the second order in time dynamical system combining viscous and Hessian-driven damping with time scaling in relation to the minimization of a nonsmooth and convex function. The system is formulated in terms of the gradient of the Moreau envelope of the objective function with a time-dependent parameter. We show fast convergence rates for the Moreau envelope, its gradient along the trajectory, and also for the system velocity. From here, we derive fast convergence rates for the objective function along a path which is the image of the trajectory of the system through the proximal operator of the first. Moreover, we prove the weak convergence of the trajectory of the system to a global minimizer of the objective function. Finally, we provide multiple numerical examples illustrating the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信