Marzieh Dordanihaghighi, Mohammad Arjmand, Mohammad H. Zarifi
{"title":"Microwave Investigation of DMSO‐Doped PEDOT:PSS Patch Resonators Under Varying Relative Humidity","authors":"Marzieh Dordanihaghighi, Mohammad Arjmand, Mohammad H. Zarifi","doi":"10.1002/admt.202400708","DOIUrl":"https://doi.org/10.1002/admt.202400708","url":null,"abstract":"Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conductive polymer widely used in various microwave sensing components. Enhancing the efficiency of PEDOT:PSS‐based microwave structures relies on improving the polymer's conductivity, achievable by adding secondary solvents such as dimethyl sulfoxide (DMSO), which significantly boosts the electrical conductivity. However, the performance of DMSO‐doped PEDOT:PSS films in microwave regime requires investigations. Herein, patch resonators are fabricated using solution processing of aqueous dispersion of PEDOT:PSS doped with varying concentrations of DMSO from 0 to 8 wt.% to investigate their microwave behavior within the frequency range of 4.5–6.5 GHz. The PEDOT:PSS patch structures are implemented on a glass substrate and their resonant characteristics, including resonant frequency and amplitude, are studied in response to varying relative humidity (RH) levels ranging from 0% to 70%. The significant variations in the microwave responses are observed at the resonant amplitude, confirming the main impact of humidity on the conductivity of the films. According to the measured results, the 2 wt.% doped patch shows greater sensitivity to the changes to the RH in contrast to the 8 wt.% doped patches, where the response shows less sensitivity to the humidity variation. The results indicate that a lower percentage of DMSO enhances sensitivity to the humidity at the cost of increased electromagnetic loss in the resonant patch structures for humidity sensing applications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoonseok Lee, Beomki Jeon, Youngboo Cho, Jihyung Kim, Wonbo Shim, Sungjun Kim
{"title":"Recent Progress in Memrsitor Array Structures and Solutions for Sneak Path Current Reduction","authors":"Yoonseok Lee, Beomki Jeon, Youngboo Cho, Jihyung Kim, Wonbo Shim, Sungjun Kim","doi":"10.1002/admt.202400585","DOIUrl":"https://doi.org/10.1002/admt.202400585","url":null,"abstract":"Memristors have diverse potential for improving data storage through linear memory control and synaptic operation in AI and neuromorphic computing. Prior research on optimizing memristors in next‐generation devices has generally indicated that emerging arrays and vertical structures can improve memory density, although special fabrication steps are required to realize improved operation. Until now, many obstructions, such as the sneak path current and forming processes from the initial device in array structure operation at the device level, have limited the development of array‐based memristor devices for further progressing circuits and integrated design. In this paper, memristor array studies are examined that have suggested solutions for sneak path current and forming operation problems at the device level. Ultimately, representative solutions are proposed to progress memristors into array structures by introducing the latest research on one diode‐one RRAM (1D1R), one selector‐one RRAM (1S1R), overshoot suppressed RRAM (OSRRAM), self‐rectifying cell (SRC), charge trap memory (CTM) and their applications. Additionally, essential details demonstrating the practical implementation of these devices in crossbar array memory are investigated. Finally, the advantages and perspectives of these array‐based memristor solutions are summarized.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng‐Xia Liang, Yi Hu, Zhi‐Guo Zhu, Zhi‐Cheng Wu, Jie Yu, Li‐Yan Liang, Jiang Wang, Li Wang, Chun‐Yan Wu, Pingan Song, Lin‐Bao Luo
{"title":"High‐Performance Flexible PbS Nanofilm Wavelength Sensor with Detection Region Ranging from DUV to NIR","authors":"Feng‐Xia Liang, Yi Hu, Zhi‐Guo Zhu, Zhi‐Cheng Wu, Jie Yu, Li‐Yan Liang, Jiang Wang, Li Wang, Chun‐Yan Wu, Pingan Song, Lin‐Bao Luo","doi":"10.1002/admt.202400730","DOIUrl":"https://doi.org/10.1002/admt.202400730","url":null,"abstract":"In this study, on the fabrication of a flexible wavelength sensor is reported, which is achieved by growing a layer of lead sulfide (PbS) nanofilm on both sides of a polyethylene terephthalate substrate using the chemical bath deposition method, followed by the deposition of two parallel Au interdigital electrodes. Experimental result shows that the photocurrent ratio of the two photodetectors monotonically decreases with increasing wavelength in the range from 265 nm (UV) to 2000 nm (NIR), indicating that the incident light wavelength can be distinguished by the photocurrent ratio. Notably, the as‐constructed wavelength sensor exhibits superior performance compared to most previously reported filter‐less designs, achieving an average absolute error of 11.5 nm and an average relative error of 1.1%. It is also found that the sensor exhibits excellent mechanical flexibility and environmental stability. Furthermore, by introducing the back‐end circuit, real‐time detection of the wavelength of monochromatic light and the peak wavelength of LED light are achieved, with detection errors not exceeding 2.8% and 2.6%, respectively. It is believed that the flexible PbS nanofilm wavelength sensor prepared in this study has potential application in future portable and flexible optoelectronic devices.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"78 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junhyung Cho, Wangmyung Choi, Taehyun Park, Hocheon Yoo
{"title":"Ultra Low Power Consumption Optoelectronic Logic Operation of CuO/BaTiO3 Heterojunction Photodetector with Tunable Internal Electric Field Based on Poling Effect","authors":"Junhyung Cho, Wangmyung Choi, Taehyun Park, Hocheon Yoo","doi":"10.1002/admt.202400697","DOIUrl":"https://doi.org/10.1002/admt.202400697","url":null,"abstract":"The study presents a novel self‐powered ultraviolet (UV) photodetector harnessing both polarization fields and photovoltaic effects, enabling the realization of ultra‐low power, reconfigurable optoelectronic logic gates. The approach is demonstrated on a CuO/BaTiO<jats:sub>3</jats:sub> heterojunction photodetector. The behavior of the photodetector is augmented by the poling effect, aligning the internal electric field of the BaTiO<jats:sub>3</jats:sub> through the application of a robust external electric field, thereby facilitating the implementation of optoelectronic logic gates. In the unpoled state, the “XOR” and “OR” logic gates operated at voltages of 750 and −500 µV, respectively. However, upon poling up state, the “XOR” logic gate exhibits reduced operation voltage, operating at 500 µV, while the “OR” logic gate implements clarity at −500 µV. In the unpoled state the “AND” logic gate does not operate; however, upon poling in the downward direction, it operated at −500 µV. The achievement demonstrates successful ultra‐low‐power logic operations, utilizing voltages in the hundreds of micron scale, under a 310 nm wavelength and a light intensity of 0.52 mW·cm<jats:sup>−2</jats:sup>. Furthermore, controllable polarization electric fields in BaTiO<jats:sub>3</jats:sub> enable the operation of “AND” logic gate in the unpoled state, presenting a promising avenue for future research in optoelectronic logic gate design.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
George Al Boustani, Zhuoran Xu, Tetsuhiko F. Teshima, Lukas Bichlmaier, Marta Nikić, Lukas Hiendlmeier, August Sayn‐Wittgenstein, Defne Tüzün, Shigeyoshi Inoue, Bernhard Wolfrum
{"title":"Non‐Conductive and Conductive Washable Amylopectin‐Mastic Gum Adhesives for On‐Skin Applications","authors":"George Al Boustani, Zhuoran Xu, Tetsuhiko F. Teshima, Lukas Bichlmaier, Marta Nikić, Lukas Hiendlmeier, August Sayn‐Wittgenstein, Defne Tüzün, Shigeyoshi Inoue, Bernhard Wolfrum","doi":"10.1002/admt.202400719","DOIUrl":"https://doi.org/10.1002/admt.202400719","url":null,"abstract":"The investigation of a skin adhesive based on amylopectin and mastic gum for attaching skin sensors are reported. The material provides reliable adhesion and is, at the same time, readily washable from the skin due to the hydrophilic character of the amylopectin compound. The effect of water and glycerol content on the adhesion properties in combination with polyimide‐based substrates is assessed and optimize the material for homogeneous and washable on‐skin applications. This results show that the adhesive material can withstand a shear stress of 88.7 ± 5.30 kPa in a lap shear test. The adhesive material can also be easily rendered conductive by adding sodium chloride. Impedance spectroscopy is performed on the conductive adhesive material to assess the impedance behavior during drying conditions over 24 h in comparison to commercial electrolyte gel. While the conductive adhesion material's initial impedance is slightly higher than the commercial gel, the long‐term assessment demonstrates a significantly improved stability over time. In conclusion, this study develops a skin adhesive combining amylopectin and mastic gum, demonstrating promising adhesion strength and conductivity properties, thus potentially addressing current stability challenges in skin‐sensor applications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robotic 3D Printing of Continuous Fiber Reinforced Thermoset Composites","authors":"Arif M. Abdullah, Martin L. Dunn, Kai Yu","doi":"10.1002/admt.202400839","DOIUrl":"https://doi.org/10.1002/admt.202400839","url":null,"abstract":"3D printing offers a cost‐effective solution for rapidly prototyping and customizing composite products. The integration of multi‐axis robotic systems with the printing process significantly enhances motion control, design flexibility, and manufacturing scalability. In this study, a robot‐assisted manufacturing platform and the associated digital workflow for the 3D printing of UV‐curable continuous fiber‐reinforced polymer composites (CFRPCs) is introduced. Specifically, a transferable protocol is established for robotic 3D printing of CFRPCs, which involves coordinate calculation, trajectory generation, and validation checks. This protocol enables the printing of composite samples or large‐scale structures on both planar substrates and curved 3D substrates. Additionally, composite printing on substrates with unknown profiles using laser‐based 3D scanning is demonstrated. Overall, the developed printing method and workflow are applicable to a broader range of feedstock materials and robotic manipulators, which makes this study a valuable resource for future developments in 3D‐printed CFRPCs.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"2013 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Y. Belinky, Nouha El Amri, Parker K. Lewis, Allie Karakosta LeMay, Rachel E. Pollard, Nathalie M. Pinkerton
{"title":"Design of Modular, 3D‐Printed Millifluidic Mixers to Enable Sequential NanoPrecipitation (SNaP) for the Tunable Synthesis of Drug‐Loaded Nanoparticles and Microparticles","authors":"Thomas Y. Belinky, Nouha El Amri, Parker K. Lewis, Allie Karakosta LeMay, Rachel E. Pollard, Nathalie M. Pinkerton","doi":"10.1002/admt.202400583","DOIUrl":"https://doi.org/10.1002/admt.202400583","url":null,"abstract":"Sequential NanoPrecipitation (SNaP) is a nascent controlled precipitation process for the tunable formation of polymeric particles for drug delivery and bioimaging. While SNaP utilizes the same self‐assembly principles as one‐step Flash NanoPrecipitation, SNaP is a two‐step assembly process in which the particle core formation is initiated during a first mixing step followed by particle stabilization in a second mixing step. Current SNaP experimental set‐ups use commercial millifluidic mixers connected in series, which have several limitations, including the inability to access short inter‐mixer delay times (Td). A robust, 3D‐printed, modular mixer design that enables access to short Td's (〈 25 ms) not previously accessible is reported. For the first time, it is demonstrated that decoupling the assembly steps improves control over particle size, expanding the attainable size range to include both nanoparticles and microparticles. It is empirically proven that inter‐mixer Td is a key parameter for particle size control and that particle size scales with Td in agreement with Smoluchowski's model of diffusion‐limited growth. The formation of particles ranging in size from 160 nm to 1.2 µm is shown. Finally, the applicability of the new mixers is established by encapsulating fluorophores and therapeutics into particles for the first time via SNaP.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Simulation of Bionic Quadruped Obstacle-Overcoming Robot","authors":"Chenyang Zhang, Jieliang Zhao, Tianyu Zhang, Qun Niu, Yongxia Gu, Shaoze Yan, Wenzhong Wang","doi":"10.1002/admt.202400992","DOIUrl":"https://doi.org/10.1002/admt.202400992","url":null,"abstract":"Advances in bionic technology have enabled quadruped robots to be more flexible. Numerous quadruped robots in various forms specialize in walking and trotting, whereas very few robots achieve high-performance obstacle-overcoming. A bionic quadruped standing long jump obstacle-overcoming robot is presented. By using two synchronous belts and energy storage, this robot is capable of high-performance jumping. A flexible spine for the bionic quadruped obstacle-overcoming robot is also presented to achieve energy storage and shock absorption during obstacle-overcoming. Furthermore, the control framework by establishing the dynamic models of the single limb is proposed. To validate the feasibility and accuracy of the design theory and robot scheme, simulations are conducted. The results of these simulations clearly illustrate the robot's ability to successfully overcome obstacles of varying heights, thereby affirming the correctness of its limb dynamics models. In comparison to traditional quadruped robots, the bionic quadruped obstacle-overcoming robot proves its efficacy in navigating challenging terrains.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"215 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Photonic Crystal Research for Structural Color","authors":"Hao Chen, Jingjiang Wei, Fei Pan, Tianyu Yuan, Yuanlai Fang, Qingyuan Wang","doi":"10.1002/admt.202400865","DOIUrl":"https://doi.org/10.1002/admt.202400865","url":null,"abstract":"Structural color is a remarkable physical phenomenon that exists widely in nature. Unlike traditional color rendering methods, they are realized mainly through micro/nanostructures that interfere, diffract, scatter light, and exhibit long‐life and environmental‐friendly color effects. In nature, a few organisms use their color‐changing system to transmit information, such as courtship, warning, or disguise. Meanwhile, some natural inorganic minerals can also exhibit structural colors. Learning from nature, scientists have achieved large‐scale structural color design and manufacturing technology for artificial photonic crystals. Photonic crystals have a unique microstructure that forms a band gap under the action of the periodic potential field, consequently causing Bragg scattering due to the periodic arrangement of different refractive index media within them. Because of the apparent photonic band gap and the ability to form local photons at crystal defects, photonic crystals have been extensively studied in recent years and have broad application prospects in photonic fibers, optical computers, chips, and other fields. In this review, the research, properties, and applications of photonic crystals in recent years are presented, as well as insight into the future developments of photonic crystals.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiayi Yang, Keke Hong, Yijun Hao, Xiaopeng Zhu, Yong Qin, Wei Su, Hongke Zhang, Chuguo Zhang, Zhong Lin Wang, Xiuhan Li
{"title":"Triboelectric Nanogenerators with Machine Learning for Internet of Things","authors":"Jiayi Yang, Keke Hong, Yijun Hao, Xiaopeng Zhu, Yong Qin, Wei Su, Hongke Zhang, Chuguo Zhang, Zhong Lin Wang, Xiuhan Li","doi":"10.1002/admt.202400554","DOIUrl":"https://doi.org/10.1002/admt.202400554","url":null,"abstract":"The development of the Internet of Things (IoT) indicates that humankind has entered a new intelligent era of the “Internet of Everything”. Thanks to the characteristics of low-cost, diverse structure, and high energy conversion efficiency, the self-powered sensing systems, which are based on the Triboelectric Nanogenerator (TENG), demonstrate great potential in the field of IoT. In order to solve the challenges of TENG in sensing signal processing, such as signal noise and nonlinear relations, Machine Learning (ML), which is an efficient and mature data processing tool, is widely applied for efficiently processing the large and complex output signal data generated by TENG intelligent sensing system. This review summarizes and analyzes the adaptation of different algorithms in TENG and their advantages and disadvantages at the beginning, which provides a reference for the selection of algorithms for TENG. More importantly, the application of TENG is introduced in multiple scenarios, including health monitoring, fault detection, and human-computer interaction. Finally, the limitations and development trend of the integration of TENG and ML are proposed by classification to promote the future development of the intelligent IoT era.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"120 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}