Additive manufacturing最新文献

筛选
英文 中文
Structural build-up of 3D printed earth by drying 三维打印土的干燥结构构建
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104492
Mahan Motamedi , Romain Mesnil , Anh-Minh Tang , Jean-Michel Pereira , Olivier Baverel
{"title":"Structural build-up of 3D printed earth by drying","authors":"Mahan Motamedi ,&nbsp;Romain Mesnil ,&nbsp;Anh-Minh Tang ,&nbsp;Jean-Michel Pereira ,&nbsp;Olivier Baverel","doi":"10.1016/j.addma.2024.104492","DOIUrl":"10.1016/j.addma.2024.104492","url":null,"abstract":"<div><div>In recent years, the potential of earth materials in construction has emerged as a sustainable pathway, offering environmental benefits compared to traditional methods. When used in raw form, earth materials can be recycled at the end of a building life, reducing construction waste. In parallel, integrating additive manufacturing into the architecture, engineering, and construction (AEC) sector has brought about a shift in construction dynamics, combining efficiency with precision. This paper bridges the study of 3D printing with earth-based fresh mortars, emphasising the capabilities of the “Forced Layer Drying” (FLD) technique in the additive manufacturing process to increase the mechanical performance of the printing mortar.</div><div>This paper begins by defining the requisite rheological properties for successful 3D printing. A chosen material for this paper is Speswhite kaolin. An instrumental aspect of our research is exploring an established model for the drying rate of saturated porous media, such as earth and concrete, and its application to predict the evaporation rate of saturated earth-based mortar in 3D printing with forced drying conditions. The Wind Tunnel experiment was conducted to validate this model, examining the interplay of airflow speed and temperature on the evaporation rate. Further deepening this study, the soil water content and undrained shear strength are correlated, specifically based on models derived from oedometer geotechnical standard tests. This facilitated a comprehensive understanding of porous earth-based materials in various moisture scenarios. Our findings confirm that airflow, temperature, and the geometry of the printed object play instrumental roles in affecting evaporation rate, consequent mechanical performance, and structural build-up of the material. The paper wraps up by offering insights into the practical application of 3D printing using earth-based mortars, with a special focus on FLD technique.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104492"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dynamic volumetric heat source model for laser additive manufacturing 用于激光增材制造的动态体积热源模型
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104531
John Coleman , Gerald L. Knapp , Benjamin Stump , Matt Rolchigo , Kellis Kincaid , Alex Plotkowski
{"title":"A dynamic volumetric heat source model for laser additive manufacturing","authors":"John Coleman ,&nbsp;Gerald L. Knapp ,&nbsp;Benjamin Stump ,&nbsp;Matt Rolchigo ,&nbsp;Kellis Kincaid ,&nbsp;Alex Plotkowski","doi":"10.1016/j.addma.2024.104531","DOIUrl":"10.1016/j.addma.2024.104531","url":null,"abstract":"<div><div>Melt pool scale models of laser powder bed fusion (LPBF) offer insights into the process-structure-property relationships in additive manufacturing (AM). These models often neglect physical phenomena such as vapor cavity formation and fluid mechanics to reduce computational demands. Instead, volumetric heat source models are used to represent the effects that these phenomena have on the predicted melt pool dimensions. Generally, the dimensions and effective absorption of the volumetric heat source are calibrated to reproduce melt pool dimensions observed in metallographic cross sections taken from single-track experiments on bare plate. However, the transient nature of LPBF often deviates the melt pool dimensions from the assumed steady-state conditions of single-track experiments, motivating the need for a volumetric heat source model that more generally considers the dynamic relationship between melt pool shape and laser-material interactions. Here, we introduce a two-parameter volumetric heat source model that integrates several existing models into a generalized mathematical expression, providing independent control over the radial heat distribution via the parameter <span><math><mi>k</mi></math></span> and the volumetric shape of the heat source via the parameter <span><math><mi>m</mi></math></span>. This parameterization enables the calibration of melt pool shape predictions through simultaneous adjustment of these parameters, while keeping the radial heat source dimensions consistent with the experimental spot size (D4σ) and constraining the heat source depth and absorption to physically derived expressions for cavities. Consequently, the proposed volumetric heat source model adapts to changes in the local melt pool conditions due to scanning strategy and part geometry by dynamically adjusting the heat source depth and absorption. We demonstrate the capabilities of the proposed model through comparisons with a collection of experiments from the Additive Manufacturing Benchmark (AMBench).</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104531"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalability enhancement in projection-based 3D printing through optical expansion 通过光学扩展提高基于投影的 3D 打印的可扩展性
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104511
Minsung Kim, Gilseon Yoo, Bogeun Kim, Yeongjun Song, Brian J. Lee
{"title":"Scalability enhancement in projection-based 3D printing through optical expansion","authors":"Minsung Kim,&nbsp;Gilseon Yoo,&nbsp;Bogeun Kim,&nbsp;Yeongjun Song,&nbsp;Brian J. Lee","doi":"10.1016/j.addma.2024.104511","DOIUrl":"10.1016/j.addma.2024.104511","url":null,"abstract":"<div><div>In the rapidly evolving field of additive manufacturing (AM), projection-based 3D printing emerges as a transformative solution to traditional manufacturing constraints. This study introduces a novel approach in projection-based 3D printing, utilizing a unique “infinity-corrected optical system” inspired by microscopy technology. The advanced optical system allows 3D printing to achieve performance comparable to multiple UV projectors while utilizing only a single UV light engine, offering a cost-efficient solution. This method enhances the print speed and expands the printable area, while maintaining the print resolution, addressing the shortcomings in existing 3D printing techniques. By employing a single UV projector along with integrated fixed optical components, this system offers a stable, reliable, and economically viable printing process. This innovation marks a pivotal advancement in mass production, mass customization, and large-area 3D printing, effectively bridging current technological gaps and paving the way for advanced manufacturing systems.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104511"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Texture optimization based on crystal plasticity modeling to improve strength and control anisotropy in heat treated additive manufactured Al-Mn-Sc alloy 基于晶体塑性建模的纹理优化,提高热处理添加剂制造的 Al-Mn-Sc 合金的强度并控制其各向异性
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104524
Yuan Gao, Xiaobin Guo
{"title":"Texture optimization based on crystal plasticity modeling to improve strength and control anisotropy in heat treated additive manufactured Al-Mn-Sc alloy","authors":"Yuan Gao,&nbsp;Xiaobin Guo","doi":"10.1016/j.addma.2024.104524","DOIUrl":"10.1016/j.addma.2024.104524","url":null,"abstract":"<div><div>Heat treatment is a common method used to control mechanical properties, but its effects on strength and anisotropy remain uncertain. Therefore, studying the microstructural evolution resulting from heat treatment and its impact on strength is essential for optimizing heat treatment processes to reduce anisotropy. While the Hall<img>Petch relation has demonstrated the influence of grain size on yield strength, the effect of grain orientation on strength is still unclear and does not adequately predict the anisotropy of strength. In this work, the relationship between grain orientation and strength anisotropy is elucidated through crystal plasticity modeling on the basis of experimental results. Two-dimensional geometry models were constructed from the electron back-scattered diffraction results of additive manufactured (AMed) and heat-treated samples. Crystal plasticity modeling was applied along various directions to assess the influence of texture on the anisotropy of strength. The modeling results indicated that the presence of grains with &lt;100&gt; and &lt;102&gt; orientations in the AMed Al-Mn-Sc alloy and of grains with &lt;112&gt; orientations in the heat-treated state are detrimental to the yield strength. To increase the yield strength and maintain the anisotropy of the yield strength within a 5 % range, the &lt;100&gt; texture was optimized to 43 % &lt;110&gt; and 57 % &lt;113&gt; textures. Consequently, the yield strength increased by 11 MPa along the building direction and 21 MPa along the transverse direction. This optimization approach effectively enhances the strength and reduces the anisotropy in AMed alloys under various conditions.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104524"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Al(OH)3 on the properties of silica-based ceramic cores prepared by laser powder bed fusion combined with vacuum infiltration Al(OH)3 对通过激光粉末床熔融结合真空渗透制备的硅基陶瓷芯性能的影响
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104527
Heng Liu , Ren-Zhong Zhang , Jia-Min Wu , Wei-Kang Li , Shi-Xiang Zhou , Jie Zhang , Wen Zheng , Chun-Ze Yan , Shi-Feng Wen , Chun-Sheng Ye , Yu-Sheng Shi , Chao-Yue Chen , Zhong-Ming Ren
{"title":"Effect of Al(OH)3 on the properties of silica-based ceramic cores prepared by laser powder bed fusion combined with vacuum infiltration","authors":"Heng Liu ,&nbsp;Ren-Zhong Zhang ,&nbsp;Jia-Min Wu ,&nbsp;Wei-Kang Li ,&nbsp;Shi-Xiang Zhou ,&nbsp;Jie Zhang ,&nbsp;Wen Zheng ,&nbsp;Chun-Ze Yan ,&nbsp;Shi-Feng Wen ,&nbsp;Chun-Sheng Ye ,&nbsp;Yu-Sheng Shi ,&nbsp;Chao-Yue Chen ,&nbsp;Zhong-Ming Ren","doi":"10.1016/j.addma.2024.104527","DOIUrl":"10.1016/j.addma.2024.104527","url":null,"abstract":"<div><div>Silica-based ceramic cores, with low coefficients of thermal expansion, low sintering temperatures, and excellent acid and alkali leaching capabilities, are essential materials for the production of hollow blades. However, their mechanical properties are suboptimal, and they present various processing challenges. In this study, silica-based ceramic cores were prepared using a combination of vacuum infiltration (VI) and laser powder bed fusion (LPBF) techniques. Al(OH)<sub>3</sub> was employed as a mineralizer to enhance the post-sintering mechanical properties and improve the efficiency of the vacuum infiltration process, thereby enhancing the overall performance of the silica-based ceramic cores. The VI process facilitated the penetration of nano-SiO<sub>2</sub> into the samples, increasing their density and promoting the formation of cristobalite during sintering at 1225°C. Additionally, the Al(OH)<sub>3</sub> powder, through pyrolysis into Al<sub>2</sub>O<sub>3</sub> during sintering, reduced microcracks, inhibited excessive cristobalite transformation, and improved the VI process, resulting in enhanced room-temperature flexural strength. By optimizing the Al(OH)<sub>3</sub> content and the VI process, significant improvements in the microstructure and properties of the silica-based ceramic cores were achieved. After three rounds of vacuum infiltration and the addition of 4 wt% Al(OH)<sub>3</sub>, the samples exhibited a high-temperature creep of 0.17 mm, with flexural strengths of 15.23 MPa at room temperature and 23.55 MPa at high temperature.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104527"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser assisted cold spray of aluminum alloy 6061: Experimental results 铝合金 6061 的激光辅助冷喷涂:实验结果
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104548
Samuel Boese , Aidan Sevinsky , Ahmad Nourian-Avval , Ozan Özdemir , Sinan Müftü
{"title":"Laser assisted cold spray of aluminum alloy 6061: Experimental results","authors":"Samuel Boese ,&nbsp;Aidan Sevinsky ,&nbsp;Ahmad Nourian-Avval ,&nbsp;Ozan Özdemir ,&nbsp;Sinan Müftü","doi":"10.1016/j.addma.2024.104548","DOIUrl":"10.1016/j.addma.2024.104548","url":null,"abstract":"<div><div>Laser-assisted cold spray (LACS) is investigated for its potential to improve the mechanical properties of cold spray deposits made by using nitrogen as the gas that carries the powder. High strength cold spray deposits are typically achieved by using the more expensive and resource limited helium. In this work, a laser collocated with the spray spot was used in nitrogen CS operations and the porosity, adhesion strength, tensile strength, and fatigue performance of aluminum alloy 6061 (Al6061) were examined. Using the laser improved all the performance metrics. By increasing the spray spot temperature from 180°C to 455°C, the porosity of the deposit reduced to 0.24 % from 1.73 %. The adhesion strength was increased from 18.4 MPa to 76.6 MPa. The tensile strength was increased from 34.3 MPa to 167.6 MPa, and the elongation was increased from 0.07 % to 15.58 %. It was shown that using laser heating during deposition increases the residual stress in the deposit, but its effects can be counteracted by using a hotplate beneath the substrate. Fatigue testing showed that fatigue performance was largely driven by tensile strength. These results are discussed in the context of in-situ temperature data and metallographic analysis. Analysis indicates these improvements are due to the combined effects of material softening, improved bonding between particles, and various heat treatment modalities.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104548"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface roughness and pore evolutions in multi-layer laser powder bed fusion of extra-low interstitial Ti-5Al-2.5Sn powder: A numerical study 特低间隙Ti-5Al-2.5Sn粉末在多层激光粉末床熔融过程中的表面粗糙度和孔隙演变:数值研究
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104530
Yifu Long , Xizhong An , Ju Wang , Meng Li , Qiong Wu , Chuanning Jiang , Junfei Liu , Dechun Ren , Haibin Ji , Shujun Li , Xing Zhang
{"title":"Surface roughness and pore evolutions in multi-layer laser powder bed fusion of extra-low interstitial Ti-5Al-2.5Sn powder: A numerical study","authors":"Yifu Long ,&nbsp;Xizhong An ,&nbsp;Ju Wang ,&nbsp;Meng Li ,&nbsp;Qiong Wu ,&nbsp;Chuanning Jiang ,&nbsp;Junfei Liu ,&nbsp;Dechun Ren ,&nbsp;Haibin Ji ,&nbsp;Shujun Li ,&nbsp;Xing Zhang","doi":"10.1016/j.addma.2024.104530","DOIUrl":"10.1016/j.addma.2024.104530","url":null,"abstract":"<div><div>In this paper, the three-dimensional discrete element method (DEM) and computational fluid dynamics (CFD) coupled approach was used to numerically reproduce the whole process of laser powder-bed-fusion (L-PBF) additive manufacturing (AM) of extra-low interstitial (ELI) Ti-5Al-2.5Sn powder. The effects of key parameters such as scanning strategy and hatch spacing (<em>h</em>) on the surface roughness (<em>Ra</em>) and pores during multi-layer printing are systematically investigated by characterizing the molten pool characteristics and thermal behavior upon laser motion; and the melt volume in this duration is quantified by the volume of fluid (VOF) method to demonstrate inter-layer interactions. The results show that <em>Ra</em> can be categorized according to the scanning directions. Along the scanning direction, the <em>Ra</em> is affected by the heat accumulation effect and increases as the <em>h</em> decreases. In this case, the <em>Ra</em> caused by the Marangoni effect can be reduced by increasing the melt volume at the end of the track through the layer rotation. The <em>Ra</em> perpendicular to the scanning direction is caused by the ripple-like surface formed by track overlap and decreases as the <em>h</em> decreases. For defects, the pores formed by shrinkage due to insufficient melting or by lack of fusion (LoF) due to incomplete track overlap decrease with the decrease of <em>h</em>. The LoF pores caused by weak inter-layer metallurgical bonding are affected by the surface morphology of the previous layer, which is increased as the <em>h</em> increases. The layer rotation can also reduce such LoF pores. On this basis, a quality control chart suitable for actual production is established.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104530"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing of lignin-based supramolecular topological shape-morphing architectures with high strength, toughness, resolution, and fatigue resistance 三维打印具有高强度、韧性、分辨率和抗疲劳性的木质素基超分子拓扑形变结构
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104519
Jian Yang , Xingye An , Lingyu Yin , Bin Lu , Xiaofeng Lyu , Zhengbai Cheng , Gangyuan Pan , Hongbin Liu , Yonghao Ni
{"title":"3D printing of lignin-based supramolecular topological shape-morphing architectures with high strength, toughness, resolution, and fatigue resistance","authors":"Jian Yang ,&nbsp;Xingye An ,&nbsp;Lingyu Yin ,&nbsp;Bin Lu ,&nbsp;Xiaofeng Lyu ,&nbsp;Zhengbai Cheng ,&nbsp;Gangyuan Pan ,&nbsp;Hongbin Liu ,&nbsp;Yonghao Ni","doi":"10.1016/j.addma.2024.104519","DOIUrl":"10.1016/j.addma.2024.104519","url":null,"abstract":"<div><div>The design and fabrication of customized and sustainable elastomers with supramolecular frameworks remain a central focus of scientific research. 3D printing represents an advanced manufacturing technology that has garnered significant attention. Lignin, a naturally abundant polymer, fits well with 3D printing due to its unique aromatic-rich structures that can provide rigidity and structural support. However, challenges persist in developing UV-curable lignin-based inks and fabricating high-strength lignin-based composite hydrogels with tailored shapes and structures through vat photopolymerization (VPP) printing techniques, largely due to lignin’s inherent heterogeneity, fragility, and poor fluidity. Here, we successfully developed a unique lignin-based photosensitive macromonomer resin tailored for VPP 3D printing. Using an ethanol/water fractionation process, heterogeneous lignosulfonate (LS), a by-product of the pulp and paper industry, was treated to isolate highly reactive lignin fractions rich in phenolic hydroxyl and sulfonic groups. These fractions were then chemically modified to synthesize a lignin-based macromonomer known as urethane acrylated lignosulfonate (UALS). The resulting lignin-based macromonomer (15–35 wt%) exhibits excellent compatibility with photosensitive resin formulations, enabling effective VPP 3D printing. The 3D-printed lignin-based supramolecular composite hydrogels exhibit high strength (tensile strength of ∼2.12 MPa, an elongation at break of ∼220.13 %), high resolution, fatigue resistance (up to 10000 cycles), and moisture-induced responsive behavior. The development of 3D-printed lignin-based supramolecular elastomers with defined shapes and patterned structures significantly advances the discovery of robust and environmentally sustainable soft materials with potential applications in soft robotics and tissue engineering.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104519"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure, mechanical properties and deformation behavior of laser additively repaired 5083 and 6061 Al alloys utilizing AlMgScZr powders 利用 AlMgScZr 粉末激光加成修复 5083 和 6061 Al 合金的微观结构、机械性能和变形行为
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104526
Rong Xu , Ruidi Li , Tiechui Yuan , Chengzhe Yu , Minbo Wang , Hongbin Zhu
{"title":"Microstructure, mechanical properties and deformation behavior of laser additively repaired 5083 and 6061 Al alloys utilizing AlMgScZr powders","authors":"Rong Xu ,&nbsp;Ruidi Li ,&nbsp;Tiechui Yuan ,&nbsp;Chengzhe Yu ,&nbsp;Minbo Wang ,&nbsp;Hongbin Zhu","doi":"10.1016/j.addma.2024.104526","DOIUrl":"10.1016/j.addma.2024.104526","url":null,"abstract":"<div><div>Laser additive repair (LAR), as an efficient repair method, lacks specialized repair materials for Al alloys. In this work, the high-strength AlMgScZr powder was employed to address the scarcity of specialized materials and the issue of inadequate performance in LAR of 5083-H112/6061-T6 Al alloy. The microstructure, mechanical properties and deformation behavior of repaired specimens were studied. The repair zone (RZ) had high strength and high density, and the porosity was as low as 0.12 %. There was good compatibility between the repair material and the base metal (BM), and good metallurgical bonding was achieved at the fusion line. The microstructure and strengthening phase (T-phase) in the heat affected zone (HAZ) of the 5083 repaired parts exhibited negligible changes, there was no deterioration in mechanical properties. The yield strength was 162 MPa, tensile strength was 291 MPa, and elongation was 16.2 %, reaching 94 %, 104 %, and 70 % of the BM, respectively. The mechanical properties are superior in the current research on LAR of Al alloys. The LAR technique showcases its versatility in repairing aging non-strengthening Al alloys. The transition of β′′→β′ (or with B′/U1/U2)→β of the nano-reinforced phase resulted in deteriorative mechanical properties of HAZ in the 6061 repair part, consequently, the tensile strength of 6061 repair part was only 63.8 % of the strength of BM. After solution aging treatment, the β′′ phase in HAZ re-precipitated, effectively restoring the strength of 6061 repaired parts. The tensile strength of the repaired parts was increased to 95.2 % of the strength of BM. The present study elucidates the evolution of microstructure and mechanical properties during LAR process of Al alloys, offering valuable insights for future applications of this technology on Al alloys.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104526"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Si3N4f/Si3N4 wave-transparent composites by vat photopolymerization combined with chemical vapor infiltration 通过槽式光聚合结合化学气相渗透制备 Si3N4f/Si3N4 透波复合材料
IF 10.3 1区 工程技术
Additive manufacturing Pub Date : 2024-09-05 DOI: 10.1016/j.addma.2024.104540
Xuye Wang , Wenyan Duan , Shan Li , Bingshan Liu , Gong Wang , Fei Chen
{"title":"Preparation of Si3N4f/Si3N4 wave-transparent composites by vat photopolymerization combined with chemical vapor infiltration","authors":"Xuye Wang ,&nbsp;Wenyan Duan ,&nbsp;Shan Li ,&nbsp;Bingshan Liu ,&nbsp;Gong Wang ,&nbsp;Fei Chen","doi":"10.1016/j.addma.2024.104540","DOIUrl":"10.1016/j.addma.2024.104540","url":null,"abstract":"<div><div>The strategic combination of material selection, forming processes, and densification techniques is crucial for optimizing the performance of wave-transparent materials in extreme environments. This study is the first time to prepare Si<sub>3</sub>N<sub>4 f</sub>/Si<sub>3</sub>N<sub>4</sub> wave-transparent composites using a combination of vat photopolymerization (VPP) 3D printing and chemical vapor infiltration (CVI) processes. The effects of Si<sub>3</sub>N<sub>4 f</sub> content on slurry preparation, green part printing, and final performance were systematically investigated. The addition of Si<sub>3</sub>N<sub>4 f</sub> significantly enhanced the toughness of Si<sub>3</sub>N<sub>4</sub> ceramics. Apart from their inherent toughening mechanisms, the \"chimeric pinning\" effect of the fibers contributes to increased interlayer bonding strength, thereby favorably impacting the mechanical properties. Combining VPP 3D printing and CVI processes resulted in Si<sub>3</sub>N<sub>4 f</sub>/Si<sub>3</sub>N<sub>4</sub> composites with a linear shrinkage rate within 1 %, essentially achieving near-net shaping. Additionally, the composites exhibited excellent mechanical and dielectric properties, with a flexural strength of 76.2 MPa, fracture toughness of 4.24 MPa·m<sup>1/2</sup>, a dielectric constant of 4, and a dielectric loss tangent of 0.01. This study leverages the high strength and toughness advantages of Si<sub>3</sub>N<sub>4 f</sub> and employs VPP 3D printing combined with CVI to achieve the objectives of lightweight, high transmittance, and near-net shaping. It provides theoretical support and experimental validation for designing and manufacturing wave-transparent materials.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104540"},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信