{"title":"Achieving dual-phase structured Cu-Al-Mn-Si alloy with prominent shape memory properties via laser powder bed fusion","authors":"","doi":"10.1016/j.addma.2024.104521","DOIUrl":"10.1016/j.addma.2024.104521","url":null,"abstract":"<div><div>In this study, Cu-11.1Al-8.15Mn-0.37Si shape memory alloy was manufactured via laser powder bed fusion (LPBF) and compared with furnace-cooling cast samples. The LPBF-manufactured samples exhibited a dual-phase structure of L2<sub>1</sub> austenite and 2H martensite, along with uniformly distributed nanoscale Mn<sub>5</sub>Si<sub>3</sub> precipitations observed via TEM. The 2H martensite presented a layer-like morphology and was confirmed to be induced by residual stress during the LPBF process. Such a dual-phase structure could be stabilized by Mn<sub>5</sub>Si<sub>3</sub> precipitations, and yielded the concurrent presence of prominent superelastic (SE) and shape memory effect (SME) properties. Under 6 % pre-strain, LPBF-manufactured samples showed an 80 % SE rate and 83 % SME rate. The recovery SE and SME strain could be up to 4.2 % and 2.1 %. Compared to the cast sample, fracture compressive and tensile strain increased by 68.4 % and 33.3 %. This enhancement was due to regularly arranged columnar crystals and strong [001]//Z texture confirmed by EBSD. These findings suggest that LPBF has the potential to produce Cu-Al-Mn-Si alloys with prominent shape memory properties and provide references for an austenite-martensite dual-phase structure.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifunctional seamless meta-sandwich composite as lightweight, load-bearing, and broadband-electromagnetic-wave-absorbing structure","authors":"","doi":"10.1016/j.addma.2024.104515","DOIUrl":"10.1016/j.addma.2024.104515","url":null,"abstract":"<div><div>Engineered porous geometries composed of low-density lossy materials are promising as broadband absorbers due to their tunable structural attenuation that can selectively manipulate electromagnetic (EM) waves. However, the exposed cellular architectures require mechanical reinforcement and additional packaging. Here, we present a multifunctional meta-sandwich structure as one seamlessly integrated component composed of functional faceplates and dielectric lossy material-based octet-truss geometries toward a lightweight, load-bearing, and high-performance broadband EM wave absorber. EM responses are explored in the 4–18 GHz range by varying material combinations and multilayers of the upper-lower faceplates and the octet-truss core, elucidating the absorbing mechanisms of meta-sandwich structures. Multi-material 3D printing that streamlines the production of the seamless meta-sandwich composite into a single step implements the devised design that simultaneously excel in EM wave absorption and mechanical functionalities. The fabricated composite in a thin, single-layer structure comprising a transmitting upper faceplate, a dielectric lossy core, and a reflecting lower faceplate, achieves an average absorption rate of 95.0 % and a broadband reflection loss (≤-10 dB) over the entire measured bandwidth. Furthermore, flexural testing confirms superior bending resistance compared to conventional honeycomb structures. The multi-materials meta-sandwich design will inspire versatile multifunctionalities enabled by rationally combining mechanical metamaterials and functional housing.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An additively manufactured heat-resistant Al-12Si alloy via introducing stable eutectic engineering","authors":"","doi":"10.1016/j.addma.2024.104523","DOIUrl":"10.1016/j.addma.2024.104523","url":null,"abstract":"<div><div>The poor microstructural stability of crack-free Al alloys synthesized via additive manufacturing typically possesses poor heat resistance. In this work, a novel heat-resistant Al-12Si-1.5Ni-2.0Fe (wt%) alloy was fabricated by additive manufacturing, in which tensile strength reaches 271 MPa and 98.1 MPa at 300 ºC and 400 ºC, respectively. Calculation and electron microscopy characterizations show that Fe/Ni segregation with high partition coefficients and low diffusion rates delivers a high thermally stability, thus providing a robust pinning force to inhibit the broken-up of Si eutectics and a solid barrier for dislocation motion at elevated temperatures. In addition to providing weight reduction by substituting Steel, Ti, and Ni-based alloys at 200–450 °C, the adoption of low-cost and stable eutectic engineering reduces the economic barriers to additive manufacturing applications.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing thermal conductivity of AlN ceramics via vat photopolymerization through refractive index coupling and oxygen fixation","authors":"","doi":"10.1016/j.addma.2024.104522","DOIUrl":"10.1016/j.addma.2024.104522","url":null,"abstract":"<div><div>Despite the growing development of ceramic fabrication by vat photopolymerization (VP), major gaps remain in application. Particularly in the case of VP-printed aluminum nitride (AlN) ceramic, the thermal conductivity is still below 170 W·m<sup>−1</sup>·K<sup>−1</sup>, a critical benchmark for efficient heat dissipation. To address this challenge, here we prepared an AlN slurry with high curing thickness through RI coupling between liquid-solid phase, and took into account of the rheological property under high solid loading. Full dense AlN green bodies with solid loading up to 50 vol% were successfully printed. Aiming to to tackle the degradation of thermal conductivity issue caused by oxygen increment of AlN via VP, we systemically studied the form of oxygen in AlN preparation processes. Through the sintering optimization, the oxygen element from the hydrolysis of AlN surface was fixated in the sintering aid Y<sub>2</sub>O<sub>3</sub>. Eventually, without any special process control or additional treatment, the final sintered AlN ceramics prepared by the developed slurry present a full densification and the highest thermal conductivity (up to 187.9 W∙m<sup>−1</sup>∙K<sup>−1</sup>) of any known additive manufactured ceramics.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of customized microneedle with high 3D capability and high structural precision","authors":"","doi":"10.1016/j.addma.2024.104509","DOIUrl":"10.1016/j.addma.2024.104509","url":null,"abstract":"<div><div>Advanced 3D fabrication techniques are essential for the processing of 3D devices, which mainly focusing on excellent 3D fabrication capability and high structural precision. Although 3D printing technology allows for the creation of complex 3D structures with extensive customization, it faces notable challenges in achieving precise micro/nanostructures within materials due to incomplete resin curing bonds. Here, we propose integrating projection micro-stereolithography (PμSL) with femtosecond (fs) laser Bessel beam drilling to create 3D structures with advanced customization, precise structures (including size accuracy and aspect ratio), and efficient processing. Starting with the drilling process using Bessel beams, we have achieved micro-holes with a diameter of approximately 1μm and the aspect ratio reached 1017:1 on 3D printed items by regulating the transparency and elasticity of the products. Furthermore, we have applied this technology to produce tailor-made microneedles, including slanted-tip microneedles and porous microneedles, demonstrating its ability for extensive, efficient micro-hole processing with a peak drilling speed of 200,000 holes per second. This technology offers an innovative approach to creating three-dimensional devices with intricate cavity structures, and its impressive processing capabilities suggest potential for broad industrial implementation.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of melt pool geometry variability on lack-of-fusion porosity and fatigue life in powder bed fusion-laser beam Ti–6Al–4V","authors":"","doi":"10.1016/j.addma.2024.104506","DOIUrl":"10.1016/j.addma.2024.104506","url":null,"abstract":"<div><div>Powder bed fusion-laser beam (PBF-LB) parts experience a significant decline in fatigue performance when process-induced defects are present. In this work, a decline in 4-point bend fatigue life was observed in PBF-LB Ti–6Al–4V coupons fabricated at constant power with increasing scanning velocity and which underwent subsequent stress relief and surface machining. Specifically, the presence of pores that resemble lack-of-fusion (LoF) and a decline in fatigue life were observed at scanning velocities lower than that expected from prior published work. It was hypothesized that this unexpected presence of LoF pores resulted from melt pool geometry variability that was not considered in prior work when the LoF criterion was implemented. Further, these pores can be small in size and infrequent in their occurrence when the melt pool geometry variability is not severe. Such sparse pores are challenging to characterize using conventional 2D characterization methods. This work leverages tall and narrow coupon geometry and high-resolution X-ray micro computed tomography (X-<span><math><mi>μ</mi></math></span>CT) to capture LoF porosity. The results show that a modified melt pool overlap-based LoF criterion considering melt pool geometry variability captures the unexpected occurrence of LoF pores observed in X-<span><math><mi>μ</mi></math></span>CT. In addition, the LoF percent metric displays a strongly negative correlation with fatigue performance. The insights from this work provide guidance on characterizing melt pool geometry variability across scan lines to systematically evaluate processing parameters that generate LoF pores, which, in turn, could lower fatigue performance.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural build-up of 3D printed earth by drying","authors":"","doi":"10.1016/j.addma.2024.104492","DOIUrl":"10.1016/j.addma.2024.104492","url":null,"abstract":"<div><div>In recent years, the potential of earth materials in construction has emerged as a sustainable pathway, offering environmental benefits compared to traditional methods. When used in raw form, earth materials can be recycled at the end of a building life, reducing construction waste. In parallel, integrating additive manufacturing into the architecture, engineering, and construction (AEC) sector has brought about a shift in construction dynamics, combining efficiency with precision. This paper bridges the study of 3D printing with earth-based fresh mortars, emphasising the capabilities of the “Forced Layer Drying” (FLD) technique in the additive manufacturing process to increase the mechanical performance of the printing mortar.</div><div>This paper begins by defining the requisite rheological properties for successful 3D printing. A chosen material for this paper is Speswhite kaolin. An instrumental aspect of our research is exploring an established model for the drying rate of saturated porous media, such as earth and concrete, and its application to predict the evaporation rate of saturated earth-based mortar in 3D printing with forced drying conditions. The Wind Tunnel experiment was conducted to validate this model, examining the interplay of airflow speed and temperature on the evaporation rate. Further deepening this study, the soil water content and undrained shear strength are correlated, specifically based on models derived from oedometer geotechnical standard tests. This facilitated a comprehensive understanding of porous earth-based materials in various moisture scenarios. Our findings confirm that airflow, temperature, and the geometry of the printed object play instrumental roles in affecting evaporation rate, consequent mechanical performance, and structural build-up of the material. The paper wraps up by offering insights into the practical application of 3D printing using earth-based mortars, with a special focus on FLD technique.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scalability enhancement in projection-based 3D printing through optical expansion","authors":"","doi":"10.1016/j.addma.2024.104511","DOIUrl":"10.1016/j.addma.2024.104511","url":null,"abstract":"<div><div>In the rapidly evolving field of additive manufacturing (AM), projection-based 3D printing emerges as a transformative solution to traditional manufacturing constraints. This study introduces a novel approach in projection-based 3D printing, utilizing a unique “infinity-corrected optical system” inspired by microscopy technology. The advanced optical system allows 3D printing to achieve performance comparable to multiple UV projectors while utilizing only a single UV light engine, offering a cost-efficient solution. This method enhances the print speed and expands the printable area, while maintaining the print resolution, addressing the shortcomings in existing 3D printing techniques. By employing a single UV projector along with integrated fixed optical components, this system offers a stable, reliable, and economically viable printing process. This innovation marks a pivotal advancement in mass production, mass customization, and large-area 3D printing, effectively bridging current technological gaps and paving the way for advanced manufacturing systems.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Texture optimization based on crystal plasticity modeling to improve strength and control anisotropy in heat treated additive manufactured Al-Mn-Sc alloy","authors":"","doi":"10.1016/j.addma.2024.104524","DOIUrl":"10.1016/j.addma.2024.104524","url":null,"abstract":"<div><div>Heat treatment is a common method used to control mechanical properties, but its effects on strength and anisotropy remain uncertain. Therefore, studying the microstructural evolution resulting from heat treatment and its impact on strength is essential for optimizing heat treatment processes to reduce anisotropy. While the Hall<img>Petch relation has demonstrated the influence of grain size on yield strength, the effect of grain orientation on strength is still unclear and does not adequately predict the anisotropy of strength. In this work, the relationship between grain orientation and strength anisotropy is elucidated through crystal plasticity modeling on the basis of experimental results. Two-dimensional geometry models were constructed from the electron back-scattered diffraction results of additive manufactured (AMed) and heat-treated samples. Crystal plasticity modeling was applied along various directions to assess the influence of texture on the anisotropy of strength. The modeling results indicated that the presence of grains with <100> and <102> orientations in the AMed Al-Mn-Sc alloy and of grains with <112> orientations in the heat-treated state are detrimental to the yield strength. To increase the yield strength and maintain the anisotropy of the yield strength within a 5 % range, the <100> texture was optimized to 43 % <110> and 57 % <113> textures. Consequently, the yield strength increased by 11 MPa along the building direction and 21 MPa along the transverse direction. This optimization approach effectively enhances the strength and reduces the anisotropy in AMed alloys under various conditions.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Al(OH)3 on the properties of silica-based ceramic cores prepared by laser powder bed fusion combined with vacuum infiltration","authors":"","doi":"10.1016/j.addma.2024.104527","DOIUrl":"10.1016/j.addma.2024.104527","url":null,"abstract":"<div><div>Silica-based ceramic cores, with low coefficients of thermal expansion, low sintering temperatures, and excellent acid and alkali leaching capabilities, are essential materials for the production of hollow blades. However, their mechanical properties are suboptimal, and they present various processing challenges. In this study, silica-based ceramic cores were prepared using a combination of vacuum infiltration (VI) and laser powder bed fusion (LPBF) techniques. Al(OH)<sub>3</sub> was employed as a mineralizer to enhance the post-sintering mechanical properties and improve the efficiency of the vacuum infiltration process, thereby enhancing the overall performance of the silica-based ceramic cores. The VI process facilitated the penetration of nano-SiO<sub>2</sub> into the samples, increasing their density and promoting the formation of cristobalite during sintering at 1225°C. Additionally, the Al(OH)<sub>3</sub> powder, through pyrolysis into Al<sub>2</sub>O<sub>3</sub> during sintering, reduced microcracks, inhibited excessive cristobalite transformation, and improved the VI process, resulting in enhanced room-temperature flexural strength. By optimizing the Al(OH)<sub>3</sub> content and the VI process, significant improvements in the microstructure and properties of the silica-based ceramic cores were achieved. After three rounds of vacuum infiltration and the addition of 4 wt% Al(OH)<sub>3</sub>, the samples exhibited a high-temperature creep of 0.17 mm, with flexural strengths of 15.23 MPa at room temperature and 23.55 MPa at high temperature.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}