Nicholas Kirschbaum , Nathaniel Wood , Chang-Eun Kim , Thejaswi U. Tumkur , Chinedum Okwudire
{"title":"Vector-level feedforward control of LPBF melt pool area using a physics-based thermal model","authors":"Nicholas Kirschbaum , Nathaniel Wood , Chang-Eun Kim , Thejaswi U. Tumkur , Chinedum Okwudire","doi":"10.1016/j.addma.2025.104981","DOIUrl":null,"url":null,"abstract":"<div><div>Laser powder bed fusion (LPBF) is an additive manufacturing technique that has gained popularity thanks to its ability to produce geometrically complex, fully dense metal parts. However, these parts are prone to internal defects and geometric inaccuracies, stemming in part from variations in the melt pool. This paper proposes a novel vector-level feedforward control framework for regulating melt pool area in LPBF. By decoupling part-scale thermal behavior from small-scale melt pool physics, the controller provides a scale-agnostic prediction of melt pool area and efficient optimization over it. This is done by operating on two coupled lightweight models: a finite-difference thermal model that efficiently captures vector-level temperature fields and a reduced-order, analytical melt pool model. Each model is calibrated separately with minimal single-track and 2D experiments, and the framework is validated on a complex 3D geometry in both Inconel 718 and 316L stainless steel. Results showed that feedforward vector-level laser power scheduling reduced geometric inaccuracy in key dimensions by 62%, overall porosity by 16.5%, and photodiode root-mean-squared deviation by 38.5% on average. Overall, this modular, data-efficient approach demonstrates that proactively compensating for known thermal effects can significantly improve part quality while remaining computationally efficient and readily extensible to other materials and machines.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"112 ","pages":"Article 104981"},"PeriodicalIF":11.1000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425003458","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Laser powder bed fusion (LPBF) is an additive manufacturing technique that has gained popularity thanks to its ability to produce geometrically complex, fully dense metal parts. However, these parts are prone to internal defects and geometric inaccuracies, stemming in part from variations in the melt pool. This paper proposes a novel vector-level feedforward control framework for regulating melt pool area in LPBF. By decoupling part-scale thermal behavior from small-scale melt pool physics, the controller provides a scale-agnostic prediction of melt pool area and efficient optimization over it. This is done by operating on two coupled lightweight models: a finite-difference thermal model that efficiently captures vector-level temperature fields and a reduced-order, analytical melt pool model. Each model is calibrated separately with minimal single-track and 2D experiments, and the framework is validated on a complex 3D geometry in both Inconel 718 and 316L stainless steel. Results showed that feedforward vector-level laser power scheduling reduced geometric inaccuracy in key dimensions by 62%, overall porosity by 16.5%, and photodiode root-mean-squared deviation by 38.5% on average. Overall, this modular, data-efficient approach demonstrates that proactively compensating for known thermal effects can significantly improve part quality while remaining computationally efficient and readily extensible to other materials and machines.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.