CrystEngCommPub Date : 2024-11-15DOI: 10.1039/D4CE00881B
Laura Razquin-Bobillo, Jose Angel García, Ricardo Hernández, Antonio Rodríguez-Diéguez and Javier Cepeda
{"title":"A family of luminescent heterometallic coordination polymers based on lanthanide(iii) ions and 6-methyl-2-oxonicotinate: near-infrared/visible emitters and colour fine-tuning†","authors":"Laura Razquin-Bobillo, Jose Angel García, Ricardo Hernández, Antonio Rodríguez-Diéguez and Javier Cepeda","doi":"10.1039/D4CE00881B","DOIUrl":"https://doi.org/10.1039/D4CE00881B","url":null,"abstract":"<p >The work presented herein reports on the synthesis, structural and physicochemical characterization and luminescence properties of a family of isostructural coordination polymers (CPs) with a general formula {[Ln(6m2onic)<small><sub>4</sub></small>Na(H<small><sub>2</sub></small>O)<small><sub>3</sub></small>]·8H<small><sub>2</sub></small>O}<small><sub><em>n</em></sub></small> (where Ln(<small>III</small>) = Nd (<strong>1</strong><small><sub><strong>Nd</strong></sub></small>), Sm (<strong>2</strong><small><sub><strong>Sm</strong></sub></small>), Dy (<strong>3</strong><small><sub><strong>Dy</strong></sub></small>), Er (<strong>4</strong><small><sub><strong>Er</strong></sub></small>), Tm (<strong>5</strong><small><sub><strong>Tm</strong></sub></small>), Yb (<strong>6</strong><small><sub><strong>Yb</strong></sub></small>) and Dy<small><sub>0.77</sub></small>Eu<small><sub>0.12</sub></small>Y<small><sub>0.11</sub></small> for the multi-metal compound (<strong>7</strong><small><sub><strong>DyEuY</strong></sub></small>) and 6m2onic = 6-methyl-2-oxonicotinate). The crystal structures consist of one-dimensional heterometallic arrays where octacoordinated lanthanide and hexacoordinated sodium centres are sequentially linked and which are held together into a 3D architecture by an extensive hydrogen bonding network formed by the crystallisation water molecules. Photoluminescence measurements in the solid state at variable temperature reveal good properties based on the capacity of the 6m2onic ligand to provide ligand-centred excitation, as suggested by time-dependent density functional theory (TDDFT), and promote efficient energy transfers to the lanthanide(<small>III</small>) ions, to eventually present intense emissions in both the visible and near-infrared (NIR) regions. On the one hand, compound <strong>4</strong><small><sub><strong>Er</strong></sub></small> displays characteristic lanthanide-centred bands in the NIR region even at room temperature, meaning that the framework is able to isolate the excitons from the vibrational quenching component. On the other hand, regarding the compounds emitting in the visible region, the almost white light emitted by compound <strong>3</strong><small><sub><strong>Dy</strong></sub></small> with a quantum yield (QY) of 6.2% should be noted. Both a purer white emission and an improved QY (up to 15.8%) may be achieved by means of a doping strategy of europium and yttrium ions into the Dy counterpart. Finally, taking advantage of white light emitted by compound <strong>3</strong><small><sub><strong>Dy</strong></sub></small>, the chemical and optical stabilities in water have been confirmed by the photophysical study performed in solution.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6707-6718"},"PeriodicalIF":2.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-15DOI: 10.1039/D4CE00906A
Evgeniy A. Losev, Daria Ya. Zheltikova, Valeri A. Drebushchak and Elena V. Boldyreva
{"title":"Template-directed crystallization of carbamazepine form II from palmitic acid melt – a key to understand mechanically-induced polymorphism of carbamazepine†","authors":"Evgeniy A. Losev, Daria Ya. Zheltikova, Valeri A. Drebushchak and Elena V. Boldyreva","doi":"10.1039/D4CE00906A","DOIUrl":"https://doi.org/10.1039/D4CE00906A","url":null,"abstract":"<p >Heating a single crystal of carbamazepine (III) (the thermodynamically stable form) in contact with solid palmitic acid resulted in the melting of palmitic acid and the growth of the crystals of carbamazepine (II) (the least stable polymorph) at the interface “carbamazepine (III) crystal–palmitic acid melt”. The study suggests a possible mechanism of the transformation of carbamazepine (III) into carbamazepine (II) on mechanical treatment with palmitic acid as an additive.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 48","pages":" 6796-6804"},"PeriodicalIF":2.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-15DOI: 10.1039/D4CE00760C
Qi He, Wei Jia, Xiang Wu and Jinghai Liu
{"title":"Flexible hybrid capacitors based on NiMoS@NiCo-LDH composites under variable work conditions†","authors":"Qi He, Wei Jia, Xiang Wu and Jinghai Liu","doi":"10.1039/D4CE00760C","DOIUrl":"https://doi.org/10.1039/D4CE00760C","url":null,"abstract":"<p >It is well known that the morphology and structure of electrode materials seriously affect the whole performance of devices. Therefore, transition metal sulfides are desirable cathode materials for supercapacitors due to their high conductivity and rich redox active sites. However, the low energy density restricts their large-scale application. Herein, we design NiMoS@NiCo-LDH core–shell structures through facile synthesis routes. The unique structures relieve volume expansion of the electrode materials during charging/discharging and promote the redox reaction. The as-fabricated products deliver a specific capacity of 1456 C g<small><sup>−1</sup></small> at 1 A g<small><sup>−1</sup></small>. A flexible device based on the obtained cathode provides an energy density of 80.21 W h kg<small><sup>−1</sup></small> at a power density of 2698.65 W kg<small><sup>−1</sup></small>. It can maintain 85% of its initial capacity after cycling 10 000 times. Furthermore, they still work stably at extreme temperatures ranging from 25 to −20 °C. The asymmetric supercapacitor (ASC) also presents excellent mechanical durability and stability at different bending angles.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 1","pages":" 55-63"},"PeriodicalIF":2.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-14DOI: 10.1039/D4CE01044B
Yiran Sun, Mintong Guo, Suping Han, Jingli Xu, Xue-Bo Yin and Min Zhang
{"title":"Ni–MoO2 heterostructure encapsulated in mesoporous silica microtubes: a structured hydrogenation catalyst with enhanced activity for reduction of 4-nitrophenol","authors":"Yiran Sun, Mintong Guo, Suping Han, Jingli Xu, Xue-Bo Yin and Min Zhang","doi":"10.1039/D4CE01044B","DOIUrl":"https://doi.org/10.1039/D4CE01044B","url":null,"abstract":"<p >Metallic Ni catalysts often suffer from serious aggregation and poor stability during the process of catalysis. In this work, core–shell nanostructures with nanosized MoO<small><sub>2</sub></small>–Ni nanoparticles (NPs) and mesoporous SiO<small><sub>2</sub></small>(mSiO<small><sub>2</sub></small>) shells were well designed to address these issues. The Ni–MoO<small><sub>2</sub></small> hybrid cores were converted from hierarchical NiMoO<small><sub>4</sub></small> microtubes inside the SiO<small><sub>2</sub></small> shell through carbonization treatment to remove the hexadecyl trimethyl ammonium bromide (CTAB) template under the protection of a nitrogen atmosphere. The mesoporous SiO<small><sub>2</sub></small> shells in Ni–MoO<small><sub>2</sub></small>@mSiO<small><sub>2</sub></small> nanoreactors prevented the agglomeration/sintering of Ni NPs, while allowing the mass diffusion of small molecules. Owing to the high catalytic performance of Ni–MoO<small><sub>2</sub></small> cores, good protection of mesoporous silica, and the unique sandwich-like structure, the obtained Ni–MoO<small><sub>2</sub></small>@mSiO<small><sub>2</sub></small> nanoreactors showed tremendous improvement in catalytic activity and stability.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 48","pages":" 6813-6822"},"PeriodicalIF":2.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-13DOI: 10.1039/D4CE00951G
Anton P. Novikov, Anastasiia V. Sitanskaia, Mikhail A. Volkov, Iurii M. Nevolin and Mikhail S. Grigoriev
{"title":"Intermolecular non-covalent interactions in the organic perrhenates crystal structures: from theory to practice†","authors":"Anton P. Novikov, Anastasiia V. Sitanskaia, Mikhail A. Volkov, Iurii M. Nevolin and Mikhail S. Grigoriev","doi":"10.1039/D4CE00951G","DOIUrl":"https://doi.org/10.1039/D4CE00951G","url":null,"abstract":"<p >Ten novel perrhenates of nitrogenous heterocycles have been generated throughout this investigation. The crystal structure of these compounds was thoroughly examined, and intermolecular non-covalent interactions were analysed using the Hirshfeld surface approach. Organic perrhenate cations interact primarily through intermolecular contacts of the H⋯H, O⋯H/H⋯O, and N⋯H/H⋯N types, whereas anions interact mostly <em>via</em> O⋯H/H⋯O interactions. Six of the eight structures with aromatic fragments had anion–π interactions, whereas four of the 11 structures had anion–anion interactions of the Re–O type. Previously unexplored subtypes of 2D networks composed of interacting tetrahedral perrhenate anions have been discovered in piperazinium and triazolium salts. Thermochemical analysis suggests that Re–O⋯Re anion–anion interactions provide additional stabilisation and impact phase transitions in perrhenates. The consistent patterns of organic salt perrhenate behaviour under MALDI-spectrometry settings have been identified. Characteristic multiplets for rhenium acid salts, which can be designated MALDI fingerprints, have been found. Potential formulae of oxorhenates corresponding to the listed multiplets have been specified.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 46","pages":" 6640-6649"},"PeriodicalIF":2.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-13DOI: 10.1039/D4CE01040J
Isabel Coloma, Santiago Herrero and Miguel Cortijo
{"title":"Intrinsically chiral paddlewheel diruthenium complexes†","authors":"Isabel Coloma, Santiago Herrero and Miguel Cortijo","doi":"10.1039/D4CE01040J","DOIUrl":"https://doi.org/10.1039/D4CE01040J","url":null,"abstract":"<p >A family of heteroleptic paddlewheel diruthenium complexes has been designed to obtain a chiral arrangement of the donor atoms of their equatorial ligands around the metal–metal bond axis. In order to do so, the non-symmetric ligands 2-hydroxy-6-methylpyridinate (hmp) and 2-amino-6-methylpyridinate (amp) were employed to obtain the following four axially chiral compounds: <em>cis</em>-[Ru<small><sub>2</sub></small>Cl(μ-DPhF)<small><sub>2</sub></small>(μ-hmp)(μ-OAc)] (<strong>Ruhmp</strong>), <em>cis</em>-[Ru<small><sub>2</sub></small>Cl(μ-DPhF)<small><sub>2</sub></small>(μ-amp)(μ-OAc)] (<strong>Ruamp</strong>), <em>cis</em>-[Ru<small><sub>2</sub></small>Cl(μ-DAniF)<small><sub>2</sub></small>(μ-hmp)(μ-OAc)] (<strong>Ru′hmp</strong>) and <em>cis</em>-[Ru<small><sub>2</sub></small>Cl(μ-DAniF)<small><sub>2</sub></small>(μ-amp)(μ-OAc)] (<strong>Ru′amp</strong>) (DPhF = <em>N</em>,<em>N</em>′-diphenylformamidinate, DAniF = <em>N</em>,<em>N</em>′-bis(<em>p</em>-methoxyphenyl)formamidinate). All the compounds were studied by single crystal X-ray diffraction, confirming that a racemic mixture containing only one of the two possible regioisomers was obtained in all cases. A general nomenclature system for naming the full configuration of intrinsically chiral paddlewheel molecules is proposed using the <em>C</em>/<em>A</em> convention. In addition, electronic spectroscopy and cyclic voltamperometry data demonstrate the electronic tunable nature of this new platform. Overall, these results provide a novel example of robust and tunable chirality, which is of potential interest to be further exploited.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6739-6747"},"PeriodicalIF":2.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ce/d4ce01040j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-12DOI: 10.1039/D4CE01015A
Yuyuan Chen, Yachang Huang, Xia Hu, Sijie Lin and De-Kun Ma
{"title":"Cu nanosheets with exposed (111) crystal facets for highly efficient electrocatalytic CO2 reduction reaction toward methanol production†","authors":"Yuyuan Chen, Yachang Huang, Xia Hu, Sijie Lin and De-Kun Ma","doi":"10.1039/D4CE01015A","DOIUrl":"https://doi.org/10.1039/D4CE01015A","url":null,"abstract":"<p >The exposed crystal facets of Cu have a profound effect on its electrocatalytic CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) activity and product selectivity. On the other hand, at present, most of the studies on Cu-based electrocatalysts for the CO<small><sub>2</sub></small>RR focus on the synthesis of C<small><sub>2+</sub></small> products. There are only a few reports involving methanol (CH<small><sub>3</sub></small>OH) generation over Cu nanocrystals. Herein, CuO nanosheets (NSs) and nanorods (NRs) were synthesized through a controlled oxidation and dehydration route under mild reaction conditions, using Cu mesh as a Cu source and conductive substrate, respectively. The as-synthesized CuO NSs and NRs were further converted into Cu NSs and NRs through an <em>in situ</em> electrochemical reduction method, respectively. The experimental results showed that CH<small><sub>3</sub></small>OH could be efficiently produced over Cu NSs with abundant (111) crystal facets through the electrocatalytic CO<small><sub>2</sub></small>RR. The maximum CH<small><sub>3</sub></small>OH faradaic efficiency (FE) obtained on Cu NSs is 68% at a relatively low applied potential of −0.6 V <em>vs.</em> reversible hydrogen electrode (RHE), which is 1.6 times larger than that achieved on Cu NRs with primarily exposed (200) crystal facets (42%). The crystal facet-dependent electrocatalytic CO<small><sub>2</sub></small>RR activity toward CH<small><sub>3</sub></small>OH production was elucidated based on theoretical calculations combined with experimental results.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 48","pages":" 6844-6851"},"PeriodicalIF":2.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-12DOI: 10.1039/D4CE01010H
Yao Ding, Zhong Yi Shi, Kailin Li, Jinsong Rao, Xiaobin Gong, Shupei Liu, Bo Yang and Yu Xin Zhang
{"title":"Bio-templated synthesis of hierarchical polypyrrole-coated VS4 for supercapacitors†","authors":"Yao Ding, Zhong Yi Shi, Kailin Li, Jinsong Rao, Xiaobin Gong, Shupei Liu, Bo Yang and Yu Xin Zhang","doi":"10.1039/D4CE01010H","DOIUrl":"https://doi.org/10.1039/D4CE01010H","url":null,"abstract":"<p >Vanadium tetrasulfide (VS<small><sub>4</sub></small>) is increasingly acknowledged as a potential electrode material for supercapacitors, attributed to its unique one-dimensional structural characteristics and elevated sulfur content. However, its intrinsic low conductivity and the tendency of vanadium to dissolve in the electrolyte have severely hindered its cycling performance, resulting in limited specific capacity under practical application conditions. The realization of advanced energy storage materials predominantly hinges on the exploitation of multiple oxidation states, the design of rational nanostructures, and the achievement of high electrical conductivity. Consequently, we report the successful construction of VS<small><sub>4</sub></small> and polypyrrole (PPy) cross-aligned nanostructures on the surface of bio-templated diatomite (De@VS<small><sub>4</sub></small>@PPy) using a two-step hydrothermal and oxidative polymerization technique, which has led to remarkable electrochemical performance (specific capacitance of 243.33 F g<small><sup>−1</sup></small> at a current density of 1 A g<small><sup>−1</sup></small>) and outstanding energy storage capabilities (97.7% capacitance retention after 3000 cycles). The highly conductive and cross-aligned nanostructures facilitate efficient electrolyte ion diffusion and concurrently minimize charge transfer resistance. Notably, the De@VS<small><sub>4</sub></small>@PPy nanostructured electrode materials demonstrate significant specific capacitance, a broad potential window, and outstanding cycling stability. Furthermore, this strategy can be readily extended to practical applications, exemplified by the asymmetric supercapacitors assembled employing De@VS<small><sub>4</sub></small>@PPy nano-electrode materials, which can achieve potential windows and maximum energy densities up to 1.8 V and 21.75 W h kg<small><sup>−1</sup></small> (at 899.94 W kg<small><sup>−1</sup></small>), respectively. This work serves as a valuable reference for future studies focused on the screening and optimization of superior electrode materials.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 1","pages":" 13-21"},"PeriodicalIF":2.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-11DOI: 10.1039/D4CE01083C
Irina A. Shentseva, Andrey N. Usoltsev, Nikita A. Korobeynikov, Maxim N. Sokolov and Sergey A. Adonin
{"title":"One-dimensional heterometallic Bi/Ag and Sb/Ag bromometalates(iii): structures, thermal stability and optical properties†","authors":"Irina A. Shentseva, Andrey N. Usoltsev, Nikita A. Korobeynikov, Maxim N. Sokolov and Sergey A. Adonin","doi":"10.1039/D4CE01083C","DOIUrl":"https://doi.org/10.1039/D4CE01083C","url":null,"abstract":"<p >Silver-containing heterometallic bromobismuthates(<small>III</small>) (3-BrPyC<small><sub>3</sub></small>){[BiAgBr<small><sub>6</sub></small>]} (<strong>1</strong>) and (ImC<small><sub>4</sub></small>){[BiAgBr<small><sub>6</sub></small>]} (<strong>2</strong>) and bromoantimonate (ImC<small><sub>4</sub></small>)<small><sub>3</sub></small>{[Sb<small><sub>3</sub></small>Ag<small><sub>2</sub></small>Br<small><sub>17</sub></small>]} (<strong>3</strong>) (3-BrPyC<small><sub>3</sub></small> – 1,6-bis(3-bromopyridin-1-ium)propane dication, ImC<small><sub>4</sub></small> – diprotonated 1,4-bis(1<em>H</em>-imidazol-1-yl)butane) were synthesized. All compounds are composed of infinite chains, featuring yet unprecedented in halometalate(<small>III</small>) chemistry structural types. <strong>1–3</strong> reveal relatively high (>200 °C) thermal stability. Optical band gaps for <strong>1–3</strong> were estimated from UV-vis spectroscopy data.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 48","pages":" 6823-6827"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-11DOI: 10.1039/D4CE01051E
Guili Wang, Wentian Wu, Chunxiao Li and Jiyong Yao
{"title":"Rare-earth oxychalcogenide Eu2ZnGe2OS6: a phase-matching infrared nonlinear optical material with [GeOS3] units†","authors":"Guili Wang, Wentian Wu, Chunxiao Li and Jiyong Yao","doi":"10.1039/D4CE01051E","DOIUrl":"https://doi.org/10.1039/D4CE01051E","url":null,"abstract":"<p >Oxychalcogenides have been highly anticipated as nonlinear optical (NLO) crystals because of their excellent optical properties. Herein, a rare-earth oxychalcogenide Eu<small><sub>2</sub></small>ZnGe<small><sub>2</sub></small>OS<small><sub>6</sub></small> was successfully designed and synthesized. It crystallizes in the non-centrosymmetric <em>P</em><img>2<small><sub>1</sub></small><em>m</em> space group with highly polarized mixed-anion [GeOS<small><sub>3</sub></small>] units and exhibits an indirect band gap of 2.22 eV, a moderate second harmonic generation (SHG) response (0.4 × AGS), and phase-matching properties. Additionally, Eu<small><sub>2</sub></small>ZnGe<small><sub>2</sub></small>OS<small><sub>6</sub></small> exhibits a significant calculated birefringence of 0.173@2090 nm. This research has enriched the rarely studied rare-earth oxychalcogenide system and provided new ideas for the design of promising IR NLO crystals.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6683-6687"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ce/d4ce01051e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}