I. D. Yushina, Yu. V. Matveychuk, N. E. Bogdanov, S. V. Adichtchev, A. S. Krylov, A. I. Stash, E. V. Boldyreva and E. V. Bartashevich
{"title":"Structural response of diiodobutenyl-bis-thioquinolinium triiodide to high pressure and theoretical study of mechanical properties†","authors":"I. D. Yushina, Yu. V. Matveychuk, N. E. Bogdanov, S. V. Adichtchev, A. S. Krylov, A. I. Stash, E. V. Boldyreva and E. V. Bartashevich","doi":"10.1039/D5CE00638D","DOIUrl":null,"url":null,"abstract":"<p >The response of the diiodobutenyl-bis-thioquinolinium triiodide crystal structure to hydrostatic compression from 1 atm to 4 GPa and mechanical stress was studied using experimental techniques (Raman and Brillouin spectroscopy, single-crystal X-ray diffraction) and periodic DFT modeling. A phase transformation above 2.5(1) GPa manifested itself by abrupt changes in the unit cell parameters and non-merohedral twinning. The changes in the band positions in the low-wavenumber region of Raman spectra were attributed to a change in the bridging hydrogen position in the N⋯H⋯N fragment and to the changes in the anion. The DFT modeling of the crystal structure on compression revealed the changes in the structural fragments that can explain why a high-pressure phase transition takes place.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 38","pages":" 6283-6294"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00638d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The response of the diiodobutenyl-bis-thioquinolinium triiodide crystal structure to hydrostatic compression from 1 atm to 4 GPa and mechanical stress was studied using experimental techniques (Raman and Brillouin spectroscopy, single-crystal X-ray diffraction) and periodic DFT modeling. A phase transformation above 2.5(1) GPa manifested itself by abrupt changes in the unit cell parameters and non-merohedral twinning. The changes in the band positions in the low-wavenumber region of Raman spectra were attributed to a change in the bridging hydrogen position in the N⋯H⋯N fragment and to the changes in the anion. The DFT modeling of the crystal structure on compression revealed the changes in the structural fragments that can explain why a high-pressure phase transition takes place.