Influence of varying the nickel salt aqueous subphase on the formation of Ni3(hexaiminotriphenylene)2 metal–organic framework nanosheets at the air/liquid interface†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-08-21 DOI:10.1039/D5CE00630A
Kazuaki Tachimoto, Kanokwan Jumtee Takeno and Rie Makiura
{"title":"Influence of varying the nickel salt aqueous subphase on the formation of Ni3(hexaiminotriphenylene)2 metal–organic framework nanosheets at the air/liquid interface†","authors":"Kazuaki Tachimoto, Kanokwan Jumtee Takeno and Rie Makiura","doi":"10.1039/D5CE00630A","DOIUrl":null,"url":null,"abstract":"<p >Metal–organic framework (MOF) nanosheets synthesized at the air/liquid interface exhibit properties, such as electrical conductivity, that are highly dependent on their structural attributes, including morphology, lateral dimensions, thickness, crystallinity, and orientation. Achieving precise control over these features, however, remains a significant challenge. Extending our previous works on the air/liquid interfacial synthesis of uniaxially oriented Ni<small><sub>3</sub></small>(HITP)<small><sub>2</sub></small> nanosheets (<strong>HITP-Ni-NS</strong>), this study explores the profound influence of the metal salt counterion—a key parameter in MOF crystallization. We present a systematic investigation into how nickel acetate (Ni(OAc)<small><sub>2</sub></small>), nickel chloride (NiCl<small><sub>2</sub></small>), and nickel nitrate (Ni(NO<small><sub>3</sub></small>)<small><sub>2</sub></small>) precursors affect the resulting nanosheet morphology, thickness, crystallinity, and orientation. Our comparative interfacial syntheses demonstrate that variations in the counterion significantly impact crystal growth kinetics, leading to discernible differences in nanosheet architecture. Notably, while NiCl<small><sub>2</sub></small> and Ni(NO<small><sub>3</sub></small>)<small><sub>2</sub></small> precursors result in the incorporation of unreacted HATP ligand stacks and subsequent nanosheet disorder, Ni(OAc)<small><sub>2</sub></small> consistently produces <strong>HITP-Ni-NS</strong> with the greatest thickness and maintains perfect alignment with a preferred ordered crystalline stacking orientation. These observed differences are attributed to variations in the <strong>HITP-Ni-NS</strong> crystal growth mechanism, likely mediated by the distinct pH of the nickel aqueous subphases. These findings highlight the critical role of the metal salt counterion in directing the growth and ultimately tailoring the functional properties of MOF nanosheets.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 35","pages":" 5793-5802"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00630a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00630a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal–organic framework (MOF) nanosheets synthesized at the air/liquid interface exhibit properties, such as electrical conductivity, that are highly dependent on their structural attributes, including morphology, lateral dimensions, thickness, crystallinity, and orientation. Achieving precise control over these features, however, remains a significant challenge. Extending our previous works on the air/liquid interfacial synthesis of uniaxially oriented Ni3(HITP)2 nanosheets (HITP-Ni-NS), this study explores the profound influence of the metal salt counterion—a key parameter in MOF crystallization. We present a systematic investigation into how nickel acetate (Ni(OAc)2), nickel chloride (NiCl2), and nickel nitrate (Ni(NO3)2) precursors affect the resulting nanosheet morphology, thickness, crystallinity, and orientation. Our comparative interfacial syntheses demonstrate that variations in the counterion significantly impact crystal growth kinetics, leading to discernible differences in nanosheet architecture. Notably, while NiCl2 and Ni(NO3)2 precursors result in the incorporation of unreacted HATP ligand stacks and subsequent nanosheet disorder, Ni(OAc)2 consistently produces HITP-Ni-NS with the greatest thickness and maintains perfect alignment with a preferred ordered crystalline stacking orientation. These observed differences are attributed to variations in the HITP-Ni-NS crystal growth mechanism, likely mediated by the distinct pH of the nickel aqueous subphases. These findings highlight the critical role of the metal salt counterion in directing the growth and ultimately tailoring the functional properties of MOF nanosheets.

Abstract Image

不同镍盐水相对Ni3(六亚胺-三苯基)2金属-有机骨架纳米片在气液界面形成的影响
在空气/液体界面合成的金属有机框架(MOF)纳米片表现出的性能,如导电性,高度依赖于它们的结构属性,包括形态、横向尺寸、厚度、结晶度和取向。然而,实现对这些特性的精确控制仍然是一个重大挑战。本研究延续了前人在空气/液界面合成单轴取向Ni3(HITP)2纳米片(HITP- ni - ns)的研究成果,探讨了金属盐反离子对MOF结晶过程的影响。我们系统地研究了醋酸镍(Ni(OAc)2)、氯化镍(NiCl2)和硝酸镍(Ni(NO3)2)前驱体对纳米片形貌、厚度、结晶度和取向的影响。我们的对比界面合成表明,反离子的变化显著影响晶体生长动力学,导致纳米片结构的明显差异。值得注意的是,虽然NiCl2和Ni(NO3)2前驱体会导致未反应的HATP配体堆积和随后的纳米片无序,但Ni(OAc)2始终产生最大厚度的HITP-Ni-NS,并保持与首选有序晶体堆积方向的完美对齐。这些观察到的差异归因于hp - ni - ns晶体生长机制的变化,可能是由镍水相的不同pH介导的。这些发现强调了金属盐反离子在指导MOF纳米片的生长和最终定制功能特性方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信