CrystEngCommPub Date : 2024-11-11DOI: 10.1039/D4CE00950A
Atash V. Gurbanov, Ghodrat Mahmoudi, Ennio Zangrando, Fedor I. Zubkov, Khudayar I. Hasanov and Kamran T. Mahmudov
{"title":"Bridging linker installation strategy in the engineering of copper(ii) complexes: activation of nitriles, efficient catalysts for the cyanosilylation of aldehydes†","authors":"Atash V. Gurbanov, Ghodrat Mahmoudi, Ennio Zangrando, Fedor I. Zubkov, Khudayar I. Hasanov and Kamran T. Mahmudov","doi":"10.1039/D4CE00950A","DOIUrl":"https://doi.org/10.1039/D4CE00950A","url":null,"abstract":"<p >A series of bridging linkers such as pyrazine (L<small><sup>1</sup></small>), 4,4′-bipyridine (L<small><sup>2</sup></small>), (<em>E</em>)-1,2-di(pyridin-4-yl)ethene (L<small><sup>3</sup></small>), 1,2-di(pyridin-4-yl)ethane (L<small><sup>4</sup></small>), 1,2-di(pyridin-4-yl)disulfane (L<small><sup>5</sup></small>), 1,2-di(pyridin-4-yl)diazene (L<small><sup>6</sup></small>) and 1,4-di(pyridin-4-yl)benzene (L<small><sup>7</sup></small>) has been used in a Cu(<small>II</small>)-mediated cyano group activation in sodium 2-(2-(dicyanomethylene)hydrazineyl)benzenesulfonate (NaHL), leading to [{Cu(H<small><sub>2</sub></small>O)(L<small><sup>a</sup></small>)}<small><sub>2</sub></small>(μ-L<small><sup>1</sup></small>)]<small><sub><em>n</em></sub></small> (<strong>1</strong>) (L<small><sup>a</sup></small> = (<em>Z</em>)-2-(1-cyano-2-imino-2-methoxyethylidene)-1-(2-sulfonatophenyl)hydrazin-1-ide), [{Cu(H<small><sub>2</sub></small>O)(L<small><sup>a</sup></small>)}<small><sub>2</sub></small>(μ-L<small><sup>2</sup></small>)]·2H<small><sub>2</sub></small>O (<strong>2</strong>), [{Cu(X)(L<small><sup>a</sup></small>)}<small><sub>2</sub></small>(μ-L<small><sup>3</sup></small>)]·3H<small><sub>2</sub></small>O (<strong>3</strong>) (X = H<small><sub>2</sub></small>O or CH<small><sub>3</sub></small>OH for the two independent units), [{Cu(CH<small><sub>3</sub></small>OH)(L<small><sup>a</sup></small>)}<small><sub>2</sub></small>(μ-L<small><sup>4</sup></small>)]·2H<small><sub>2</sub></small>O (<strong>4</strong>), [{Cu(L<small><sup>a</sup></small>)}<small><sub>2</sub></small>(μ-L<small><sup>5</sup></small>)<small><sub>2</sub></small>]<small><sub><em>n</em></sub></small> (<strong>5</strong>), [{Cu(μ-L<small><sup>a</sup></small>)}<small><sub>2</sub></small>(μ-L<small><sup>6</sup></small>)Cu(H<small><sub>2</sub></small>O)(L<small><sup>a</sup></small>)]<small><sub>2</sub></small>·4H<small><sub>2</sub></small>O (<strong>6</strong>) and [{Cu(H<small><sub>2</sub></small>O)(L<small><sup>a</sup></small>)}<small><sub>2</sub></small>(μ-L<small><sup>7</sup></small>)] (<strong>7</strong>), respectively. Depending on the length of the respective linkers, the distance between the two copper(<small>II</small>) centres in <strong>1–7</strong> can be expanded/adjusted from 6.762 to 15.138 Å. The catalytic activity of the synthesized compounds in the cyanosilylation reaction of aldehydes with trimethylsilyl cyanide in methanol was performed. No linear correlation among the length of the bridging ligands and the yield of 2-phenyl-2-((trimethylsilyl)oxy)acetonitrile was observed in <strong>1–7</strong> catalysed cyanosilylation of benzaldehyde with trimethylsilyl cyanide, but the copper complexes show a higher catalytic activity in comparison to the monomer [Cu(H<small><sub>2</sub></small>O)<small><sub>2</sub></small>(L<small><sup>a</sup></small>)]. The higher catalytic activity exhibited by complex <strong>5</strong> was further investigated evaluating the effects of reaction time, ca","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6692-6700"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-07DOI: 10.1039/D4CE00770K
Diana N. Evtushenko, Alexander V. Fateev, Mark A. Khainovsky, Julia Polishchuk, Oleg V. Kokorev, Temur F. Nasibov, Anna V. Gorokhova, Usman A. Bariev, Konstantin V. Zaitsev, Igor A. Khlusov and Olga V. Vodyankina
{"title":"Intermolecular interactions, regioselectivity, and biological activity of l-ascorbic acid, nicotinic acid and their cocrystal†","authors":"Diana N. Evtushenko, Alexander V. Fateev, Mark A. Khainovsky, Julia Polishchuk, Oleg V. Kokorev, Temur F. Nasibov, Anna V. Gorokhova, Usman A. Bariev, Konstantin V. Zaitsev, Igor A. Khlusov and Olga V. Vodyankina","doi":"10.1039/D4CE00770K","DOIUrl":"https://doi.org/10.1039/D4CE00770K","url":null,"abstract":"<p >The systems of intermolecular interactions, including hydrogen bonds, in the crystal structures of the cocrystal of <small>L</small>-ascorbic (<small>L</small>-Asc) and nicotinic (Nic) acids and individual coformers are considered, and the hemolytic and cytotoxic activities of these compounds are studied <em>in vitro</em>. The influence of conformational differences of <small>L</small>-Asc molecules (total effective charge) on the formation of a network of H-bonds in the supramolecular structure of pristine <small>L</small>-Asc is revealed. Calculation of regioselectivity descriptors shows that the conformer of the <small>L</small>-Asc molecule in the <small>L</small>-AscNic cocrystal has higher activity compared to conformer molecules of the pristine <small>L</small>-Asc. No hemolysis caused by the solutions of tested acids and <small>L</small>-AscNic is shown. Selective cytotoxicity (antimetabolic effect according to the MTT test) of solutions of <small>L</small>-AscNic cocrystals against a 72-hour culture of MCF-7 breast cancer cell line <em>versus</em> healthy cells (mesenchymal stem cells and embryonic fibroblasts) is revealed. The possible relationship between the initial conformational state of the <small>L</small>-Asc molecules in the composition/structure of the studied solid compounds and the biological activity of solutions of these compounds requires further studies.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 46","pages":" 6650-6666"},"PeriodicalIF":2.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-07DOI: 10.1039/D4CE00964A
Ivan V. Khariushin, Véronique Bulach, Jas S. Ward, Kari Rissanen, Svetlana E. Solovieva, Igor S. Antipin, Alexander S. Ovsyannikov and Sylvie Ferlay
{"title":"Synthesis, crystal structure, and gas sorption studies of two neutral octahedral {MII24}-cages built from sulfonylcalix[4]arene tetranuclear clusters and triazine linkers†","authors":"Ivan V. Khariushin, Véronique Bulach, Jas S. Ward, Kari Rissanen, Svetlana E. Solovieva, Igor S. Antipin, Alexander S. Ovsyannikov and Sylvie Ferlay","doi":"10.1039/D4CE00964A","DOIUrl":"https://doi.org/10.1039/D4CE00964A","url":null,"abstract":"<p >Two isostructural nanosized coordination cages of formula [M<small><sup>II</sup></small><small><sub>4</sub></small>SO<small><sub>2</sub></small>TCA(μ<small><sub>4</sub></small>-OH<small><sub>2</sub></small>)]<small><sub>6</sub></small>TATB<small><sub>8</sub></small>·<em>n</em>S (M = Co or Ni, SO<small><sub>2</sub></small>TCA = sulfonylcalix[4]arene, TATB = 4,4′,4′′-<em>s</em>-triazine-2,4,6-triyl-tribenzoate trisanion, S are solvent molecules) were obtained following a three-components strategy, using two different synthetic methods, leading to face-panelled octahedral coordination cages. The compounds were thoroughly analysed from a structural point of view, and for M = Co, the adsorption properties were measured, revealing a high surface area (SA = 742 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>) and a large CO<small><sub>2</sub></small> uptake for these types of compounds.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 48","pages":" 6789-6795"},"PeriodicalIF":2.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-06DOI: 10.1039/D4CE00841C
Jie Zhang, Yu-Xin Ma, Ming Wu, Qing He, Shuya Chen, Ping Ju, Yuan-Chun He and Xiaowu Lei
{"title":"Zero-dimensional organic–inorganic hybrid zinc halide with stable broadband blue light emissions†","authors":"Jie Zhang, Yu-Xin Ma, Ming Wu, Qing He, Shuya Chen, Ping Ju, Yuan-Chun He and Xiaowu Lei","doi":"10.1039/D4CE00841C","DOIUrl":"https://doi.org/10.1039/D4CE00841C","url":null,"abstract":"<p >Blue light emitters are an important composition of the three primary colors. Considering the instability and toxicity of three-dimensional (3D) lead halide perovskites, it is significant to explore lead-free hybrid metal halides with high luminescence efficiency and green and pollution-free synthesis processes as solid blue light-emitting materials. In this work, a novel family of zero-dimensional (0D) hybrid zinc-based halides AZnX<small><sub>4</sub></small> (A = <em>N</em>-EtPipz, DMPZ, DAPr-Pipz, and MPPZ; X = Cl and Br) based on discrete [ZnX<small><sub>4</sub></small>]<small><sup>2−</sup></small> tetrahedrons were prepared by a simple method. When excited by UV light, all the four compounds exhibited bright blue light emissions, and among them, [DAPr-Pipz]ZnBr<small><sub>6</sub></small> had a photoluminescence quantum yield (PLQY) of 27.68%, indicating their potential as high-efficiency blue phosphors for assembling white light-emitting diodes (LEDs).</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 46","pages":" 6585-6590"},"PeriodicalIF":2.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-05DOI: 10.1039/D4CE01039F
Junhao Wu, Xiao Zhang, Sijia Ren, Xinhui Lu, Jiaxin Yang and Kui Li
{"title":"Employing a MoO2@NiO heterojunction as a highly selective and efficient electrochemical ethanol-to-acetaldehyde conversion catalyst†","authors":"Junhao Wu, Xiao Zhang, Sijia Ren, Xinhui Lu, Jiaxin Yang and Kui Li","doi":"10.1039/D4CE01039F","DOIUrl":"https://doi.org/10.1039/D4CE01039F","url":null,"abstract":"<p >The electrochemical manipulation of organic compounds offers a promising alternative for the synthesis of valuable organic materials under mild conditions. In this study, the MoO<small><sub>2</sub></small>@NiO heterostructure was successfully synthesized as an efficient thin-film electrode material for electrochemical ethanol oxidation, using amorphous Ni(OH)<small><sub><em>x</em></sub></small> nanosheets as the precursor. During electrocatalytic ethanol oxidation, this electrode exhibited a significantly reduced overpotential, achieving a value of only 1.41 V at a current density of 50 mA cm<small><sup>−2</sup></small>. Additionally, product analysis revealed that the heterojunction electrode demonstrated high faradaic efficiency (70%) and selectivity (80%) for acetaldehyde. The outstanding performance of this electrode can be attributed to the <em>in situ</em> transformation of MoO<small><sub>2</sub></small> species during the catalytic process. In the electrolyte, MoO<small><sub>2</sub></small> exists as MoO<small><sub>4</sub></small><small><sup>2−</sup></small> and undergoes a series of processes including precipitation, dissolution, and redeposition on the electrode surface. These processes lead to the formation of a novel molecular outer layer, significantly enhancing the activity and stability of the electrode material. This study provides valuable insights into the potential replacement of anodes in the electrocatalytic oxidation of ethanol in aqueous solutions, thereby contributing to the development of more efficient and sustainable electrochemical systems.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6701-6706"},"PeriodicalIF":2.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-05DOI: 10.1039/D4CE00736K
Yeheng Zhang, Junnan Chen, Wensong Lin, Ran Gao, Xin Mai, Huanxia Lin and Yong He
{"title":"Zn-ion doped BiOBr for enhanced photocatalytic degradation of methyl blue†","authors":"Yeheng Zhang, Junnan Chen, Wensong Lin, Ran Gao, Xin Mai, Huanxia Lin and Yong He","doi":"10.1039/D4CE00736K","DOIUrl":"https://doi.org/10.1039/D4CE00736K","url":null,"abstract":"<p >In this work, BiOBr photocatalysts doped with zinc ions were manufactured to improve their photocatalytic degradation of methyl blue (MB). Among them, Zn<small><sup>2+</sup></small>/BiOBr-8 exhibited the highest photodegradation efficiency of MB after 100 min of illumination. After six-cycle experiments, it was found that its photocatalytic performance remained at a high level. The composition and microstructure of the materials were characterized by techniques such as XRD, FTIR, XPS, SEM, and TEM. The optical properties and the photodegradation performance of the materials were investigated by DRS, PL, photocurrent, and active species trapping experiments. The reasonable mechanism for photocatalytic degradation of MB was proposed.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6729-6738"},"PeriodicalIF":2.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-05DOI: 10.1039/D4CE00605D
Andrea Giunchi, Lorenzo Pandolfi, Raffaele G. Della Valle, Tommaso Salzillo, Elisabetta Venuti, Nicola Demitri, Hans Riegler, Christina Petschacher, Jie Liu and Oliver Werzer
{"title":"Structural properties and lattice phonons evolution in phenothiazine/iminostilbene solid solutions†","authors":"Andrea Giunchi, Lorenzo Pandolfi, Raffaele G. Della Valle, Tommaso Salzillo, Elisabetta Venuti, Nicola Demitri, Hans Riegler, Christina Petschacher, Jie Liu and Oliver Werzer","doi":"10.1039/D4CE00605D","DOIUrl":"https://doi.org/10.1039/D4CE00605D","url":null,"abstract":"<p >Together with co-crystals, solid solutions of molecular systems are vital in the design of multicomponent solids that exhibit improved physical and chemical properties compared to those of pure substances. In this work, both the bulk and thin film phases of the molecular solid solutions of the active pharmaceutical ingredients (APIs) phenothiazine (PTZ) and iminostilbene (ISB) are characterized structurally, while low frequency Raman spectroscopy coupled with DFT simulations is employed to understand the impact of the loss of perfect periodicity of the mixed system on its lattice dynamics. X-ray diffraction methods show the statistical distribution of the two molecules in the structure, and the steady variation of the structural parameters with solution composition, confirming that we are dealing with monophasic mixtures. The spectroscopic properties are demonstrated to be different depending on the nature of the vibrational mode. While the vibrational spectra of molecules can always be decomposed into a superposition of the spectra of the two pure compounds, the lattice phonons exhibit a continuous evolution throughout the solution series.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 46","pages":" 6573-6584"},"PeriodicalIF":2.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ce/d4ce00605d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-04DOI: 10.1039/D4CE00953C
Yaling Wu, Zhaopeng Sun, Lingmeng Yu, Yingying Chen, Zhibo Li, Mengli Li, Dan Liu, Zheng Yan and Xuebo Cao
{"title":"Synergistic effect of CoII, NiII and FeII/FeIII in trimetallic MOFs for enhancing electrocatalytic water oxidation†","authors":"Yaling Wu, Zhaopeng Sun, Lingmeng Yu, Yingying Chen, Zhibo Li, Mengli Li, Dan Liu, Zheng Yan and Xuebo Cao","doi":"10.1039/D4CE00953C","DOIUrl":"https://doi.org/10.1039/D4CE00953C","url":null,"abstract":"<p >Metal–organic frameworks (MOFs) can catalyze the oxygen evolution reaction (OER) process. Despite the established link between pristine MOFs and electrocatalysts, a number of limitations still hamper the understanding of the key factors that determine OER performance. In this paper, taking the ideal <strong>Co-MOF</strong> model as the structural basis (this MOF contains unsaturated coordinated metal centers and one-dimensional metal chains), nickel ions and/or iron ions are introduced to obtain isostructural bimetallic and trimetallic MOFs. Furthermore, the valence state of the iron element in the trimetallic MOF is regulated to improve the OER performance. The electrochemical performance test results confirm that the trimetallic <strong>(Co</strong><small><sub><strong>1</strong></sub></small><strong>Ni</strong><small><sub><strong>1</strong></sub></small><strong>)</strong><small><sub><strong>2</strong></sub></small><strong>Fe</strong><small><sub><strong>1</strong></sub></small><strong>(<small>II</small>)-MOF</strong> regulated by valence state shows excellent catalytic performance in the OER, which is superior to monometallic and bimetallic MOFs. Its enhanced catalytic performance can be attributed to the synergistic interactions between unsaturated Co, Ni and Fe sites as well as the faster charge transfer ability of the Fe<small><sup>II</sup></small>/Fe<small><sup>III</sup></small> mixed-phase system, which facilitates the optimization of the adsorption and activation processes of the reactants/intermediates. This exploration provides a new perspective for further studying the structure–performance relationship of metal–organic framework materials and developing more efficient OER catalysts.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 46","pages":" 6608-6617"},"PeriodicalIF":2.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-04DOI: 10.1039/D4CE00892H
Sarabjeet Kaur, Jeremy Harvey, Luc Van Meervelt and Christine E. A. Kirschhock
{"title":"Crystal structures of potassium and cesium salts of adenine: the role of alkali cations†","authors":"Sarabjeet Kaur, Jeremy Harvey, Luc Van Meervelt and Christine E. A. Kirschhock","doi":"10.1039/D4CE00892H","DOIUrl":"https://doi.org/10.1039/D4CE00892H","url":null,"abstract":"<p >This study reports the crystal structures of potassium and cesium salts of adenine (K-adenine and Cs-adenine) from the perspective of the interaction of alkali cations with purine nucleobases. Unlike previously-known guanine salts, both K-adenine and Cs-adenine are anhydrous, with the counter ions (K<small><sup>+</sup></small> and Cs<small><sup>+</sup></small>) directly coordinating to the ring nitrogens of adenine anions. In both structures, the crystal packing is predominantly determined by cation–anion interactions, with additional stabilization through hydrogen-bonding of neighbouring adenines. Attempts to crystallise either the cesium salt of guanine or the sodium salt of adenine were unsuccessful. To explain this trend, quantum-chemical calculations were performed to rationalise the preferences of sodium, potassium, and cesium cations to coordinate either with water or adenylate/guanylate anions. The exchange energies of cation–anion complexes reveal that sodium cations exhibit a preference for water or guanylate coordination <em>via</em> oxygen, while cesium cations prefer adenylate coordination <em>via</em> nitrogen functions, avoiding water interaction. Potassium exhibits an intermediate trend. Overall, this research offers insights into interactions between alkali-cations and organic anions, aiding the development of new crystalline compounds and co-crystals.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 48","pages":" 6805-6812"},"PeriodicalIF":2.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ce/d4ce00892h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CrystEngCommPub Date : 2024-11-01DOI: 10.1039/D4CE01050G
Nitu Rani, Aman K. K. Bhasin, Ahmad Husain, Annu Kumari, Reshu Verma, K. K. Bhasin and Girijesh Kumar
{"title":"Sulfur-hinged L-shaped ligand-based Cd(ii)–organic framework: a fluorescent tool for targeting environmental nitroaromatics†","authors":"Nitu Rani, Aman K. K. Bhasin, Ahmad Husain, Annu Kumari, Reshu Verma, K. K. Bhasin and Girijesh Kumar","doi":"10.1039/D4CE01050G","DOIUrl":"https://doi.org/10.1039/D4CE01050G","url":null,"abstract":"<p >We present the synthesis and detailed structural characterization of a cadmium-based metal–organic framework (<strong>Cd-MOF</strong>) with the formula [Cd(<strong>L</strong><small><sup><strong>4-Py</strong></sup></small>)(nipa)(H<small><sub>2</sub></small>O)]<small><sub><em>n</em></sub></small>, where <strong>L</strong><small><sup><strong>4-Py</strong></sup></small> stands for <em>N</em>,<em>N</em>′-(thiobis(4,1-phenylene))diisonicotinamide and anionic nipa<small><sup>2−</sup></small> represents 5-nitroisophthalate. This <strong>Cd-MOF</strong> has been investigated for its potential application as a fluorescent probe, demonstrating highly selective recognition of nitroaromatic compounds (NACs). The <strong>Cd-MOF</strong> was synthesized using ligand <strong>L</strong><small><sup><strong>4-Py</strong></sup></small>, co-ligand H<small><sub>2</sub></small>nipa, and cadmium iodide. Single crystal X-ray diffraction analysis revealed that the <strong>Cd-MOF</strong> forms a one-dimensional (1D) polymeric structure and is finally adapted into a three-dimensional (3D) supramolecular network through various C–H---π interactions. The 3D framework features channels with cross-sectional dimensions of 17.31 × 20.31 Å<small><sup>2</sup></small>, aligned along the crystallographic <em>b</em>-axis, and accommodates coordinated water molecules. Remarkably, the <strong>Cd-MOF</strong> exhibits high fluorescence stability in aqueous solutions and is capable of selectively detecting 4-nitrophenol (4-NP) and 4-nitrotoluene (4-NT). The detection is characterized by high quenching constants and low detection limits, specifically 3.09 × 10<small><sup>4</sup></small> M<small><sup>−1</sup></small> and 0.166 μM for 4-NP, and 3.09 × 10<small><sup>4</sup></small> M<small><sup>−1</sup></small> and 0.184 μM for 4-NT. We argued that the fluorescence quenching of <strong>Cd-MOF</strong> in the presence of NACs is driven by competitive absorption and a synergistic interaction between the amidic functionalities and hinged ‘S’ atom in the ligand framework of <strong>Cd-MOF</strong> and NACs. This powerful synergy enables quick detection of NACs through triggered fluorescence quenching response.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 47","pages":" 6719-6728"},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}