Torvid Feiler, Franziska Emmerling and Biswajit Bhattacharya
{"title":"多组分有机固体选择性合成的可持续机械化学方法:实时原位洞察","authors":"Torvid Feiler, Franziska Emmerling and Biswajit Bhattacharya","doi":"10.1039/D5CE00663E","DOIUrl":null,"url":null,"abstract":"<p >Crystalline multicomponent organic solids (MOSs) such as cocrystals and ionic cocrystals hold immense potential in diverse functional applications, ranging from pharmaceuticals to optoelectronics. However, conventional solution-based crystallization methods often result in polymorphic mixtures and lack precise control over product composition. Herein, we report a comparative investigation of solution crystallization <em>versus</em> mechanochemical synthesis for constructing MOSs from 9-anthracenecarboxylic acid (ACA) and 4,4′-bipyridine (BPY). Solution-based approaches consistently yielded concomitant formation of neutral cocrystal (CC) and ionic cocrystal (ICC) forms, regardless of the solvent used. The resulting multicomponent solids were comprehensively characterized using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. In contrast, mechanochemical methods, including neat grinding (without solvent) and liquid-assisted grinding (with minimum solvent), enabled selective formation of either a phase pure CC or ICC form. Less polar and nonpolar organic solvents favor the kinetic CC, while polar water promotes formation of the thermodynamically stable ICC. Time-resolved <em>in situ</em> powder X-ray diffraction (TRIS-PXRD) captures the dynamic evolution of solid-state phases and reveals the complete transformation of the CC into ICC under neat grinding or water-assisted conditions. This study highlights the powerful role of mechanochemistry and <em>in situ</em> monitoring in steering solid-state reactivity and offers a sustainable pathway for the targeted and scalable synthesis of pure multicomponent organic materials.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 37","pages":" 6184-6192"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00663e?page=search","citationCount":"0","resultStr":"{\"title\":\"Sustainable mechanochemical approach for the selective synthesis of multicomponent organic solids: real-time in situ insights\",\"authors\":\"Torvid Feiler, Franziska Emmerling and Biswajit Bhattacharya\",\"doi\":\"10.1039/D5CE00663E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Crystalline multicomponent organic solids (MOSs) such as cocrystals and ionic cocrystals hold immense potential in diverse functional applications, ranging from pharmaceuticals to optoelectronics. However, conventional solution-based crystallization methods often result in polymorphic mixtures and lack precise control over product composition. Herein, we report a comparative investigation of solution crystallization <em>versus</em> mechanochemical synthesis for constructing MOSs from 9-anthracenecarboxylic acid (ACA) and 4,4′-bipyridine (BPY). Solution-based approaches consistently yielded concomitant formation of neutral cocrystal (CC) and ionic cocrystal (ICC) forms, regardless of the solvent used. The resulting multicomponent solids were comprehensively characterized using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. In contrast, mechanochemical methods, including neat grinding (without solvent) and liquid-assisted grinding (with minimum solvent), enabled selective formation of either a phase pure CC or ICC form. Less polar and nonpolar organic solvents favor the kinetic CC, while polar water promotes formation of the thermodynamically stable ICC. Time-resolved <em>in situ</em> powder X-ray diffraction (TRIS-PXRD) captures the dynamic evolution of solid-state phases and reveals the complete transformation of the CC into ICC under neat grinding or water-assisted conditions. This study highlights the powerful role of mechanochemistry and <em>in situ</em> monitoring in steering solid-state reactivity and offers a sustainable pathway for the targeted and scalable synthesis of pure multicomponent organic materials.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 37\",\"pages\":\" 6184-6192\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00663e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00663e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00663e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sustainable mechanochemical approach for the selective synthesis of multicomponent organic solids: real-time in situ insights
Crystalline multicomponent organic solids (MOSs) such as cocrystals and ionic cocrystals hold immense potential in diverse functional applications, ranging from pharmaceuticals to optoelectronics. However, conventional solution-based crystallization methods often result in polymorphic mixtures and lack precise control over product composition. Herein, we report a comparative investigation of solution crystallization versus mechanochemical synthesis for constructing MOSs from 9-anthracenecarboxylic acid (ACA) and 4,4′-bipyridine (BPY). Solution-based approaches consistently yielded concomitant formation of neutral cocrystal (CC) and ionic cocrystal (ICC) forms, regardless of the solvent used. The resulting multicomponent solids were comprehensively characterized using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. In contrast, mechanochemical methods, including neat grinding (without solvent) and liquid-assisted grinding (with minimum solvent), enabled selective formation of either a phase pure CC or ICC form. Less polar and nonpolar organic solvents favor the kinetic CC, while polar water promotes formation of the thermodynamically stable ICC. Time-resolved in situ powder X-ray diffraction (TRIS-PXRD) captures the dynamic evolution of solid-state phases and reveals the complete transformation of the CC into ICC under neat grinding or water-assisted conditions. This study highlights the powerful role of mechanochemistry and in situ monitoring in steering solid-state reactivity and offers a sustainable pathway for the targeted and scalable synthesis of pure multicomponent organic materials.