多组分有机固体选择性合成的可持续机械化学方法:实时原位洞察

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-08-13 DOI:10.1039/D5CE00663E
Torvid Feiler, Franziska Emmerling and Biswajit Bhattacharya
{"title":"多组分有机固体选择性合成的可持续机械化学方法:实时原位洞察","authors":"Torvid Feiler, Franziska Emmerling and Biswajit Bhattacharya","doi":"10.1039/D5CE00663E","DOIUrl":null,"url":null,"abstract":"<p >Crystalline multicomponent organic solids (MOSs) such as cocrystals and ionic cocrystals hold immense potential in diverse functional applications, ranging from pharmaceuticals to optoelectronics. However, conventional solution-based crystallization methods often result in polymorphic mixtures and lack precise control over product composition. Herein, we report a comparative investigation of solution crystallization <em>versus</em> mechanochemical synthesis for constructing MOSs from 9-anthracenecarboxylic acid (ACA) and 4,4′-bipyridine (BPY). Solution-based approaches consistently yielded concomitant formation of neutral cocrystal (CC) and ionic cocrystal (ICC) forms, regardless of the solvent used. The resulting multicomponent solids were comprehensively characterized using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. In contrast, mechanochemical methods, including neat grinding (without solvent) and liquid-assisted grinding (with minimum solvent), enabled selective formation of either a phase pure CC or ICC form. Less polar and nonpolar organic solvents favor the kinetic CC, while polar water promotes formation of the thermodynamically stable ICC. Time-resolved <em>in situ</em> powder X-ray diffraction (TRIS-PXRD) captures the dynamic evolution of solid-state phases and reveals the complete transformation of the CC into ICC under neat grinding or water-assisted conditions. This study highlights the powerful role of mechanochemistry and <em>in situ</em> monitoring in steering solid-state reactivity and offers a sustainable pathway for the targeted and scalable synthesis of pure multicomponent organic materials.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 37","pages":" 6184-6192"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00663e?page=search","citationCount":"0","resultStr":"{\"title\":\"Sustainable mechanochemical approach for the selective synthesis of multicomponent organic solids: real-time in situ insights\",\"authors\":\"Torvid Feiler, Franziska Emmerling and Biswajit Bhattacharya\",\"doi\":\"10.1039/D5CE00663E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Crystalline multicomponent organic solids (MOSs) such as cocrystals and ionic cocrystals hold immense potential in diverse functional applications, ranging from pharmaceuticals to optoelectronics. However, conventional solution-based crystallization methods often result in polymorphic mixtures and lack precise control over product composition. Herein, we report a comparative investigation of solution crystallization <em>versus</em> mechanochemical synthesis for constructing MOSs from 9-anthracenecarboxylic acid (ACA) and 4,4′-bipyridine (BPY). Solution-based approaches consistently yielded concomitant formation of neutral cocrystal (CC) and ionic cocrystal (ICC) forms, regardless of the solvent used. The resulting multicomponent solids were comprehensively characterized using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. In contrast, mechanochemical methods, including neat grinding (without solvent) and liquid-assisted grinding (with minimum solvent), enabled selective formation of either a phase pure CC or ICC form. Less polar and nonpolar organic solvents favor the kinetic CC, while polar water promotes formation of the thermodynamically stable ICC. Time-resolved <em>in situ</em> powder X-ray diffraction (TRIS-PXRD) captures the dynamic evolution of solid-state phases and reveals the complete transformation of the CC into ICC under neat grinding or water-assisted conditions. This study highlights the powerful role of mechanochemistry and <em>in situ</em> monitoring in steering solid-state reactivity and offers a sustainable pathway for the targeted and scalable synthesis of pure multicomponent organic materials.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 37\",\"pages\":\" 6184-6192\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d5ce00663e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00663e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d5ce00663e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶体多组分有机固体(MOSs),如共晶和离子共晶,在从制药到光电子的各种功能应用中具有巨大的潜力。然而,传统的基于溶液的结晶方法往往导致多晶混合物,缺乏对产品组成的精确控制。在此,我们报告了溶液结晶与机械化学合成的比较研究,以9-蒽甲酸(ACA)和4,4 ' -联吡啶(BPY)为原料构建MOSs。无论使用何种溶剂,基于溶液的方法始终产生中性共晶(CC)和离子共晶(ICC)形式的同时形成。采用单晶x射线衍射、粉末x射线衍射、傅里叶变换红外光谱、差热分析和热重分析等方法对合成的多组分固体进行了综合表征。相比之下,机械化学方法,包括纯研磨(无溶剂)和液体辅助研磨(用最少溶剂),可以选择性地形成相纯CC或ICC形式。低极性和非极性有机溶剂有利于动力学CC的形成,而极性水促进热稳定ICC的形成。时间分辨原位粉末x射线衍射(TRIS-PXRD)捕获了固相的动态演变,揭示了纯磨或水辅助条件下CC向ICC的完全转变。这项研究强调了机械化学和原位监测在控制固态反应性方面的强大作用,并为纯多组分有机材料的靶向和可扩展合成提供了一条可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainable mechanochemical approach for the selective synthesis of multicomponent organic solids: real-time in situ insights

Sustainable mechanochemical approach for the selective synthesis of multicomponent organic solids: real-time in situ insights

Crystalline multicomponent organic solids (MOSs) such as cocrystals and ionic cocrystals hold immense potential in diverse functional applications, ranging from pharmaceuticals to optoelectronics. However, conventional solution-based crystallization methods often result in polymorphic mixtures and lack precise control over product composition. Herein, we report a comparative investigation of solution crystallization versus mechanochemical synthesis for constructing MOSs from 9-anthracenecarboxylic acid (ACA) and 4,4′-bipyridine (BPY). Solution-based approaches consistently yielded concomitant formation of neutral cocrystal (CC) and ionic cocrystal (ICC) forms, regardless of the solvent used. The resulting multicomponent solids were comprehensively characterized using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. In contrast, mechanochemical methods, including neat grinding (without solvent) and liquid-assisted grinding (with minimum solvent), enabled selective formation of either a phase pure CC or ICC form. Less polar and nonpolar organic solvents favor the kinetic CC, while polar water promotes formation of the thermodynamically stable ICC. Time-resolved in situ powder X-ray diffraction (TRIS-PXRD) captures the dynamic evolution of solid-state phases and reveals the complete transformation of the CC into ICC under neat grinding or water-assisted conditions. This study highlights the powerful role of mechanochemistry and in situ monitoring in steering solid-state reactivity and offers a sustainable pathway for the targeted and scalable synthesis of pure multicomponent organic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信