Microgravity Science and Technology最新文献

筛选
英文 中文
Effect of Simulated Microgravity on Artificial Single Cell Membrane Mechanics 模拟微重力对人工单细胞膜力学的影响
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-08-13 DOI: 10.1007/s12217-024-10133-9
R. G. Asuwin Prabu, Anagha Manohar, S. Narendran, Anisha Kabir, Swathi Sudhakar
{"title":"Effect of Simulated Microgravity on Artificial Single Cell Membrane Mechanics","authors":"R. G. Asuwin Prabu,&nbsp;Anagha Manohar,&nbsp;S. Narendran,&nbsp;Anisha Kabir,&nbsp;Swathi Sudhakar","doi":"10.1007/s12217-024-10133-9","DOIUrl":"10.1007/s12217-024-10133-9","url":null,"abstract":"<div><p>The study of cell membrane structures under microgravity is crucial for understanding the inherent physiological and adaptive mechanisms relevant to overcoming challenges in human space travel and gaining deeper insight into the membrane-protein interactions at reduced gravity. However, the membrane dynamics under microgravity conditions is not unraveled yet. Moreover, the complexity of cells poses significant challenges when investigating the effects of microgravity on individual components, including cell membranes. Giant Unilamellar Vesicles (GUVs) serve as valuable cell-mimicking models and act as artificial cells, providing insights into the biophysics of membrane architecture. Herein, we have elucidated the membrane dynamics of artificial cells under simulated microgravity conditions. GUVs were synthesized in the size range of 20 <i>±</i> 2.1 μm and their morphological changes were examined under simulated microgravity conditions using a random positioning machine. We observed that the well-defined spherical GUVs were transfigured and deformed into elongated structures under microgravity conditions. The membrane fluidity of GUVs increased sevenfold under microgravity conditions compared to GUVs under normal gravity conditions at 48 h. It is also noted that there is a reduction in the membrane microviscosity. The study sheds light on the membrane mechanics under microgravity conditions and contributes valuable insights to the broader understanding of membrane responses to microgravity and its implications for space exploration and biomedical applications.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142181796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Microgravity on Cerebrovascular Complications: Exploring Molecular Manifestation and Promising Countermeasures 微重力对脑血管并发症的影响:探索分子表现和可行对策
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-08-07 DOI: 10.1007/s12217-024-10131-x
Pankaj Neje, Brijesh Taksande, Milind Umekar, Shubhada Mangrulkar
{"title":"Influence of Microgravity on Cerebrovascular Complications: Exploring Molecular Manifestation and Promising Countermeasures","authors":"Pankaj Neje,&nbsp;Brijesh Taksande,&nbsp;Milind Umekar,&nbsp;Shubhada Mangrulkar","doi":"10.1007/s12217-024-10131-x","DOIUrl":"10.1007/s12217-024-10131-x","url":null,"abstract":"<div><p>With NASA and other space agencies planning for longer-duration spaceflights, such as missions to Mars, and the rise in space tourism, it is crucial to comprehend the impact of the space environment on human health. However, there is a lack of information on how spaceflight impacts cerebrovascular health. The absence of gravitational force negatively affected various physiological functions in astronauts, especially posing risks to the cerebrovascular system. Exposure to microgravity leads to fluid changes that impact cardiac function, arterial pressure, and cerebrovascular structural changes that may be the cause of cognitive impairment. Numerous experiments have simulated microgravity to study the damage caused by prolonged spaceflight and reported similar findings. Understanding the effect of simulated microgravity on cerebrovascular structure and function has important implications for cerebrovascular health on Earth and in space. Simulated microgravity has been shown to induce endothelial dysfunction, altering nitric oxide (NO) synthesis pathways and increasing oxidative stress. Dysregulation of the Renin-Angiotensin system, NADPH oxidases, K<sup>+</sup> Channels, and L-type Ca<sup>2+</sup> Channels contributes to vascular dysfunction, while mitochondrial complexes expression and Ca<sup>2+</sup> concentration exacerbate oxidative stress. This knowledge is essential for creating effective countermeasures to protect astronaut health during extended space missions. Therapeutic interventions targeting mitochondrial ROS and NADPH oxidases showed promise in mitigating these effects. This review article delves into the significant challenges posed by extended spaceflight, focusing on the cerebrovascular systems. It also provides a comprehensive understanding of molecular mechanisms associated with microgravity-induced cerebrovascular dysfunction and potential therapeutic interventions, paving the way for safer and more effective space travel.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Heat Flux and Bubble Dynamics on Mixed Wetting Surfaces 混合润湿表面上的临界热通量和气泡动力学
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-07-17 DOI: 10.1007/s12217-024-10130-y
Xueli Wang, Quan Gao, Pengju Zhang, Jianfu Zhao, Na Xu, Yonghai Zhang
{"title":"Critical Heat Flux and Bubble Dynamics on Mixed Wetting Surfaces","authors":"Xueli Wang,&nbsp;Quan Gao,&nbsp;Pengju Zhang,&nbsp;Jianfu Zhao,&nbsp;Na Xu,&nbsp;Yonghai Zhang","doi":"10.1007/s12217-024-10130-y","DOIUrl":"10.1007/s12217-024-10130-y","url":null,"abstract":"<div><p>To study the effect of micro-structured surface with wedge-shaped channel on pool boiling heat transfer performance of FC-72, four kinds of mixed wettability surfaces with area ratio of the micro-pillar region to the smooth channel region of approximately 1:1 were fabricated in this study (the surfaces were denoted as the Multi tip surface, Multi star surface, Less tip surface and Less star surface). The experimental results indicated that the CHF increases with the increase of liquid subcooling. The structural surface parameters will affect the bubble dynamics behavior and thus affect CHF. The effect of capillary wick suction on the mixed wetting surface first increases and then decreases. The capillary wick suction plays a significant role in the increase of CHF, and the capillary wick force on the Less tip surface with the best heat transfer performance is the largest. The Zuber model is modified by combining three factors to propose a critical heat flux model suitable for mixed wetting surfaces. With the increase of heat flux, the bubble detachment frequency decreases, the bubble detachment diameter increases and the nucleation site density basically shows exponential growth. Bubbles in the micro-pillar array region will be driven to slip onto the smooth channel due to energy difference and the bubbles in smooth channels will also migrate in the direction of wider smooth channels under the action of Laplace force.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Forced Convection on the Combustion Chemistry of PMMA Spheres in Microgravity 强制对流对微重力条件下 PMMA 球体燃烧化学性质的影响
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-07-13 DOI: 10.1007/s12217-024-10128-6
Tatyana Bolshova, Andrey Shmakov, Vladimir Shvartsberg
{"title":"Effect of Forced Convection on the Combustion Chemistry of PMMA Spheres in Microgravity","authors":"Tatyana Bolshova,&nbsp;Andrey Shmakov,&nbsp;Vladimir Shvartsberg","doi":"10.1007/s12217-024-10128-6","DOIUrl":"10.1007/s12217-024-10128-6","url":null,"abstract":"<div><p>The influence of the forced convection rate on the chemical structure of a polymethyl methacrylate (PMMA) flame in an oxidizer flow under microgravity conditions was studied using numerical modeling. Gas flow around a solid sphere was simulated using the full Navier–Stokes equations for a multicomponent mixture. A multistep chemical kinetic mechanism was considered in the gas phase. The heat transfer and radiation in both the condensed and gas phases were considered in the modeling. On the PMMA surface, the pyrolysis reaction leading to the transformation of fuel from the condensed phase to the gas phase is specified. The forced convection speed varied in the range from 3 to 20 cm/s. Analysis of CO<sub>2</sub> concentration fields near the burning surface under microgravity conditions showed that the maximum CO<sub>2</sub> concentration is observed in the downstream zone. The width of the flame zone and its chemical structure depend on the intensity of forced convection. The width of the flame against the flow decreases, and the maximum CO concentration increases as the forced convection rate increases. Analysis of the rates of fuel consumption reactions showed that at a low convection speed (v<sub>st</sub>=3 cm/s), the reaction with the H radical, which has the highest diffusion coefficient, plays a crucial role in MMA oxidation.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10128-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Interfacial Heat Transfer on Hydrothermal Wave Propagation of Nanofluid Thermocapillary Convection in Rectangular Cavity 界面传热对矩形腔中纳米流体热毛细管对流的水热波传播的影响
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-07-06 DOI: 10.1007/s12217-024-10129-5
Yanni Jiang, Cheng Dai, Xiaoming Zhou
{"title":"Effect of Interfacial Heat Transfer on Hydrothermal Wave Propagation of Nanofluid Thermocapillary Convection in Rectangular Cavity","authors":"Yanni Jiang,&nbsp;Cheng Dai,&nbsp;Xiaoming Zhou","doi":"10.1007/s12217-024-10129-5","DOIUrl":"10.1007/s12217-024-10129-5","url":null,"abstract":"<div><p>For surface tension driven flow, interfacial heat transfer can alter the flow regime and its transition condition. This paper investigates the influence of interfacial heat transfer on critical transition and hydrothermal wave propagation of nanofluid thermocapillary convection for the first time, and three environment temperature conditions is considered, e.g. the cold-end temperature, the average temperature of the hot and cold-end, and a linear temperature distribution. The results indicate that, as nanoparticles volume fraction increases the critical Marangoni number decreases under various ambient temperature conditions, meanwhile, the fundamental frequency of the velocity oscillations exhibits a linear decrease, and the propagation angle and temperature fluctuation range of hydrothermal waves are decreased. Furthermore, for the three ambient temperature scenarios, the linear temperature distribution condition can amplify the propagation angle and temperature fluctuation range of hydrothermal waves. Consequently, the manipulation of both the nanoparticle volume fraction and ambient temperature condition provides a means to control the instability of nanofluid thermocapillary convection.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141574294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Electro-Elastic Instability of Viscoelastic Fluid in a Microchannel with Obstacles Under Heterogeneous Surface Potential 带障碍物的微通道中粘弹性流体在异质表面电位下的电弹性不稳定性
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-07-02 DOI: 10.1007/s12217-024-10127-7
Guofang Li, Xinhui Si, Botong Li, Jing Zhu, Limei Cao
{"title":"The Electro-Elastic Instability of Viscoelastic Fluid in a Microchannel with Obstacles Under Heterogeneous Surface Potential","authors":"Guofang Li,&nbsp;Xinhui Si,&nbsp;Botong Li,&nbsp;Jing Zhu,&nbsp;Limei Cao","doi":"10.1007/s12217-024-10127-7","DOIUrl":"10.1007/s12217-024-10127-7","url":null,"abstract":"<div><p>In this paper, the Electro-elastic instability(EEI) of an Oldroyd-B fluids flow the microchannel with the obstacles and heterogenous surface charged is studied. The changes in fluid flow are presented by considering three different ranges of Weissenberg numbers(<i>Wi</i>), the expansion lengths <span>(textrm{EL})</span>, and the asymmetric potential distributions. Under the combined effects of heterogeneous surface potential and elastic stresses, not only the vortices but also lip vortices are generated near the obstacles. At lower Weissenberg numbers, the stable and symmetric flow field is observed. As <i>Wi</i> increases, it is worth noting that the flow field becomes unstable and chaotic due to the enhanced electro-elastic instability. But the asymmetry of the velocity diminishes as <span>(Wi&gt;10)</span>. In addition, the presence of different vortex dynamics is observed as the <i>Wi</i> varies, such as the lip vortices, angular vortices, and oscillating lip vortices. Further, the flow of fluid at different expansion ratios is investigated. With the decrease of expansion lengths <span>(textrm{EL})</span>, the backflow and asymmetry are reduced, the lip vortex disappears and then the angular vortex appears. Finally, by increasing the upper zeta potential <span>((zeta _{textrm{w}}))</span> of the obstacles, the mixing efficiency is improved. The research results may be helpful to the electrodynamic transport of viscoelastic fluids in porous media and the analysis of micromixers for industrial applications.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads 使用无干扰有效载荷进行复合编队飞行的实验研究
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-07-02 DOI: 10.1007/s12217-024-10119-7
Zijun Xiong, Qing Li, Hongjie Yang, Lei Liu
{"title":"Experimental Investigation of Composite Formation Flying Using Disturbance-Free Payloads","authors":"Zijun Xiong,&nbsp;Qing Li,&nbsp;Hongjie Yang,&nbsp;Lei Liu","doi":"10.1007/s12217-024-10119-7","DOIUrl":"10.1007/s12217-024-10119-7","url":null,"abstract":"<div><p>Precise formation control is increasingly demanded in high-resolution remote sensing formations, gravitational detection interferometers and distributed space telescopes. One composite formation flying method using disturbance-free payloads was previously proposed to enhance formation accuracy and payload stability. This method divided satellite formation into coarse formation using conventional satellite buses and fine formation using precise payloads. To verify the effectiveness of the proposed formation method and the payload stability performance, this paper develops an experimental system using two air-floating satellite prototypes. First, the experimental design is proposed and the experimental system model is established. Second, the experimental prototype development and system architecture are described in detail. Finally, the composite formation flying effectiveness is further demonstrated by coarse and fine formation control experiments. The experiment results indicate that the composite formation flying method effectively improves the formation accuracy for distributed payloads and isolates microvibrations from satellite buses to enhance payload stability.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical and Experimental Investigation of Heat Transfer in the Porous Media of an Additively Manufactured Evaporator of a Two-Phase Mechanically Pumped Loop for Space Applications 用于太空应用的两相机械泵环路添加式制造蒸发器多孔介质传热的数值和实验研究
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-06-29 DOI: 10.1007/s12217-024-10122-y
Luca Valdarno, Vijay K. Dhir, Benjamin Furst, Eric Sunada
{"title":"Numerical and Experimental Investigation of Heat Transfer in the Porous Media of an Additively Manufactured Evaporator of a Two-Phase Mechanically Pumped Loop for Space Applications","authors":"Luca Valdarno,&nbsp;Vijay K. Dhir,&nbsp;Benjamin Furst,&nbsp;Eric Sunada","doi":"10.1007/s12217-024-10122-y","DOIUrl":"10.1007/s12217-024-10122-y","url":null,"abstract":"<div><p>Two-phase pumped cooling systems are applied when it is required to maintain a very stable temperature for heat dissipation in a system. A novel additively manufactured evaporator for two-phase thermal control was developed at NASA Jet Propulsion Laboratory (JPL). The Two-Phase Mechanically Pumped Loop (2PMPL) allows to manage the heat transfer with much wider breadth of control authority compared to capillary-based systems, while alleviating the system's sensitivity to pressure drops. The focus of this work is the understanding and capturing the micro-scale evaporation occurring in the porous structure of the evaporator. The Boiling and Phase Change Heat Transfer Laboratory at the University of California, Los Angeles (UCLA) developed an all-encompassing numerical simulation tool to predict the operational thermal behavior of the evaporator considering the effect of the liquid-vapor interface at the wick-to-vapor boundary. The numerical model incorporated the behaviour of the liquid-vapor meniscus at particle level located along the evaporative boundary between the wick structure and the vapor chamber. The numerical model allowed to study the effect of different parameters, such as boundary conditions, geometry, wick and fluid properties. An experimental setup was built at UCLA in order to characterize the heat transfer within an additively manufactured porous sample fabricated at JPL and in particular its evaporative heat load under certain heat inputs. The experimental efforts served as validation for the numerical results and aided in the characterization of the transient phenomena, such as dry-out.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-024-10122-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of the Microbial Online Monitoring Module (MOMM) for the Chinese Space Station 为中国空间站开发微生物在线监测模块(MOMM)
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-06-27 DOI: 10.1007/s12217-024-10125-9
Zihe Xu, Fangwu Liu, Xinlian Zhang, Qing Tian, Tao Zhang
{"title":"Development of the Microbial Online Monitoring Module (MOMM) for the Chinese Space Station","authors":"Zihe Xu,&nbsp;Fangwu Liu,&nbsp;Xinlian Zhang,&nbsp;Qing Tian,&nbsp;Tao Zhang","doi":"10.1007/s12217-024-10125-9","DOIUrl":"10.1007/s12217-024-10125-9","url":null,"abstract":"<div><p>The enclosed space environment demands sustainable environmental control systems. Space stations and interstellar missions, both need reliable environmental control and life support systems for crewed flights and long-term habitation. These long-duration space missions require monitoring for potential pathogens and microbial contamination, which is crucial for astronaut health and the reliable operation of space equipment. To meet this critical need, the China Space Station (CSS) is equipped with the Microbial Online Monitoring Module (MOMM), which integrates two methods for microbial detection, the first method involves cultivating microorganisms in culture dishes for observation, while the second method uses isothermal nucleic acid amplification and detection technology based on Loop-mediated Isothermal Amplification(LAMP). This equipment is applied in the microgravity environment of the space station to achieve rapid detection of microbial species and abundance in orbit. Hardware function validation tests and validation experiments of the sensitivity and shelf life of the reagents were conducted on the ground, and several full-process microbial detection experiments were carried out to ensure the function and feasibility of the MOMM. Subsequently, an experimental process of microbial cultivation and observation was successfully carried out on the CSS using air samples from the space station. The MOMM allows for early detection of microbes in orbit, contributing to implementing targeted biosecurity and maintenance measures.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigation of Force and Vibration Transmission by the Hifim Jump Sled during Repeated Jumping in Microgravity 在微重力条件下反复跳跃时,Hifim 跳跃橇对力和振动传播的缓解作用
IF 1.3 4区 工程技术
Microgravity Science and Technology Pub Date : 2024-06-24 DOI: 10.1007/s12217-024-10126-8
Daniel J Cleather, John E Kennett
{"title":"Mitigation of Force and Vibration Transmission by the Hifim Jump Sled during Repeated Jumping in Microgravity","authors":"Daniel J Cleather,&nbsp;John E Kennett","doi":"10.1007/s12217-024-10126-8","DOIUrl":"10.1007/s12217-024-10126-8","url":null,"abstract":"<div><p>High Frequency Impulse for Microgravity (HIFIm) is an exercise countermeasure that is designed to minimize force and vibration transmission to the spacecraft during exercise without the need for an additional VIS. The purpose of this study was to evaluate the effectiveness of HIFIm in mitigating force transmission in microgravity during parabolic flight. Force between HIFIm and the aircraft was measured using a custom-made arrangement of load cells during repeated jumping by two participants. Mean peak force transmission to the aircraft was 4.79 ± 0.68 N.kg<sup>− 1</sup>. In addition, the frequency spectra for the upper and lower fixations to the aircraft were within the envelope of what is permissible for an exercise countermeasure on Gateway. These data support the design concept of HIFIm and suggest that HIFIm could be installed in a space habitat with no, or minimal, additional VIS. Measuring the force and vibration transmission of exercise countermeasures in microgravity during parabolic flight is highly challenging due to the safety constraints of the experimental platform and the extreme changes in acceleration (from 0 to 1.8 g). The fact that this performance can be directly measured for HIFIm is a key advantage. The results presented here add to the mounting evidence that HIFIm is the future of exercise countermeasures.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信