微重力条件下毛细管驱动流的实验特征

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Domenico Fiorini, Alessia Simonini, Johan Steelant, David Seveno, Miguel Alfonso Mendez
{"title":"微重力条件下毛细管驱动流的实验特征","authors":"Domenico Fiorini,&nbsp;Alessia Simonini,&nbsp;Johan Steelant,&nbsp;David Seveno,&nbsp;Miguel Alfonso Mendez","doi":"10.1007/s12217-024-10142-8","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the capillary rise dynamics of highly wetting liquids in a divergent U-tube in the microgravity conditions provided by 78th European Space Agency (ESA) parabolic flight. This configuration produces a capillary-driven channel flow. We use image recording in backlight illumination to characterize the interface dynamics and dynamic contact angle of HFE7200 and Di-Propylene Glycol (DPG). For the case of HF7200, we complement the interface measurements with Particle Tracking Velocimetry (PTV) to characterize the velocity fields underneath the moving meniscus. In the DPG experiments, varying liquid column heights are observed, with a notable decrease in meniscus curvature when the contact line transitions from a pre-wetted to a dry substrate. In contrast, for HFE7200, the interface consistently advances over a pre-wetted surface. Despite this, a reduction in meniscus curvature is detected, attributed to inertial effects within the underlying accelerating flow. PTV measurements reveal that the region where the velocity profile adapts to the meniscus velocity decreases as interface acceleration increases, suggesting a direct relationship between acceleration and the velocity adaptation length scale.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Characterization of Capillary Driven Flows in Microgravity\",\"authors\":\"Domenico Fiorini,&nbsp;Alessia Simonini,&nbsp;Johan Steelant,&nbsp;David Seveno,&nbsp;Miguel Alfonso Mendez\",\"doi\":\"10.1007/s12217-024-10142-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work investigates the capillary rise dynamics of highly wetting liquids in a divergent U-tube in the microgravity conditions provided by 78th European Space Agency (ESA) parabolic flight. This configuration produces a capillary-driven channel flow. We use image recording in backlight illumination to characterize the interface dynamics and dynamic contact angle of HFE7200 and Di-Propylene Glycol (DPG). For the case of HF7200, we complement the interface measurements with Particle Tracking Velocimetry (PTV) to characterize the velocity fields underneath the moving meniscus. In the DPG experiments, varying liquid column heights are observed, with a notable decrease in meniscus curvature when the contact line transitions from a pre-wetted to a dry substrate. In contrast, for HFE7200, the interface consistently advances over a pre-wetted surface. Despite this, a reduction in meniscus curvature is detected, attributed to inertial effects within the underlying accelerating flow. PTV measurements reveal that the region where the velocity profile adapts to the meniscus velocity decreases as interface acceleration increases, suggesting a direct relationship between acceleration and the velocity adaptation length scale.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10142-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10142-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了在欧洲航天局(ESA)第 78 次抛物线飞行提供的微重力条件下,发散 U 形管中高度润湿液体的毛细管上升动力学。这种配置产生了毛细管驱动的通道流。我们使用背光照明下的图像记录技术来表征 HFE7200 和二丙二醇(DPG)的界面动态和动态接触角。对于 HF7200,我们使用粒子跟踪测速仪(PTV)对界面测量进行补充,以表征移动半月板下的速度场。在 DPG 实验中,我们观察到不同的液柱高度,当接触线从预湿基底过渡到干燥基底时,半月板曲率明显减小。与此相反,对于 HFE7200,界面在预湿表面上一直向前移动。尽管如此,仍检测到半月板曲率减小,这归因于底层加速流的惯性效应。PTV 测量显示,随着界面加速度的增加,速度剖面与半月板速度相适应的区域会减小,这表明加速度与速度适应长度尺度之间存在直接关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Experimental Characterization of Capillary Driven Flows in Microgravity

An Experimental Characterization of Capillary Driven Flows in Microgravity

This work investigates the capillary rise dynamics of highly wetting liquids in a divergent U-tube in the microgravity conditions provided by 78th European Space Agency (ESA) parabolic flight. This configuration produces a capillary-driven channel flow. We use image recording in backlight illumination to characterize the interface dynamics and dynamic contact angle of HFE7200 and Di-Propylene Glycol (DPG). For the case of HF7200, we complement the interface measurements with Particle Tracking Velocimetry (PTV) to characterize the velocity fields underneath the moving meniscus. In the DPG experiments, varying liquid column heights are observed, with a notable decrease in meniscus curvature when the contact line transitions from a pre-wetted to a dry substrate. In contrast, for HFE7200, the interface consistently advances over a pre-wetted surface. Despite this, a reduction in meniscus curvature is detected, attributed to inertial effects within the underlying accelerating flow. PTV measurements reveal that the region where the velocity profile adapts to the meniscus velocity decreases as interface acceleration increases, suggesting a direct relationship between acceleration and the velocity adaptation length scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信