Model-Based Investigation of a Dielectrophoretic Microfluidic Device for the Separation of Polystyrene Particles

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Wenbo Han, Hongyuan Zou, Yiwen Zheng, Yu Liu, Xin Wang, Wei Li, Yuqing Sun, Hongpeng Zhang
{"title":"Model-Based Investigation of a Dielectrophoretic Microfluidic Device for the Separation of Polystyrene Particles","authors":"Wenbo Han,&nbsp;Hongyuan Zou,&nbsp;Yiwen Zheng,&nbsp;Yu Liu,&nbsp;Xin Wang,&nbsp;Wei Li,&nbsp;Yuqing Sun,&nbsp;Hongpeng Zhang","doi":"10.1007/s12217-024-10150-8","DOIUrl":null,"url":null,"abstract":"<div><p>Particle separation holds great significance as it has the potential to enhance product quality, efficiency, and safety across various industries by selectively sorting particles based on their specific characteristics. This, in turn, contributes to the improvement of processes in areas such as product manufacturing, environmental protection, and resource extraction. This paper proposes a novel microfluidic platform employing dielectrophoresis (DEP) principles to achieve the sorting of particles based on their size. This methodology leverages the dielectric characteristics of polystyrene particles. By manipulating various control parameters, such as electrode shapes (planar, V-shaped, and sinusoidal), the alteration of angles within the same electrode shape, adjustments in electrode widths, and electrode quantity. The study utilizes numerical simulation to compute the spatial distribution of the electric field within the microfluidic chip and predict the trajectories of particles within the microfluidic channel. Through quantitative comparison and analysis, a more optimized microfluidic chip with smaller size and shorter time, capable of effectively separating particles, is ultimately presented.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10150-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Particle separation holds great significance as it has the potential to enhance product quality, efficiency, and safety across various industries by selectively sorting particles based on their specific characteristics. This, in turn, contributes to the improvement of processes in areas such as product manufacturing, environmental protection, and resource extraction. This paper proposes a novel microfluidic platform employing dielectrophoresis (DEP) principles to achieve the sorting of particles based on their size. This methodology leverages the dielectric characteristics of polystyrene particles. By manipulating various control parameters, such as electrode shapes (planar, V-shaped, and sinusoidal), the alteration of angles within the same electrode shape, adjustments in electrode widths, and electrode quantity. The study utilizes numerical simulation to compute the spatial distribution of the electric field within the microfluidic chip and predict the trajectories of particles within the microfluidic channel. Through quantitative comparison and analysis, a more optimized microfluidic chip with smaller size and shorter time, capable of effectively separating particles, is ultimately presented.

基于模型的聚苯乙烯颗粒分离压电微流控装置研究
颗粒分离技术具有重要意义,因为它可以根据颗粒的具体特性对其进行选择性分拣,从而提高各行各业的产品质量、效率和安全性。这反过来又有助于改进产品制造、环境保护和资源开采等领域的流程。本文提出了一种新颖的微流体平台,利用介电泳(DEP)原理实现基于颗粒大小的分拣。这种方法利用了聚苯乙烯颗粒的介电特性。通过操纵各种控制参数,如电极形状(平面、V 形和正弦)、改变同一电极形状的角度、调整电极宽度和电极数量。研究利用数值模拟计算微流控芯片内电场的空间分布,并预测微粒在微流控通道内的运动轨迹。通过定量比较和分析,最终提出了一种尺寸更小、时间更短,能够有效分离颗粒的更优化的微流控芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信