癌症耐药(英文)最新文献

筛选
英文 中文
Overcoming immuno-resistance by rescheduling anti-VEGF/cytotoxics/anti-PD-1 combination in lung cancer model. 在肺癌模型中重新安排抗血管内皮生长因子/细胞毒素/抗-PD-1联合疗法,克服免疫耐受。
癌症耐药(英文) Pub Date : 2024-03-14 eCollection Date: 2024-01-01 DOI: 10.20517/cdr.2023.146
Guillaume Sicard, Dorian Protzenko, Sarah Giacometti, Fabrice Barlési, Joseph Ciccolini, Raphaelle Fanciullino
{"title":"Overcoming immuno-resistance by rescheduling anti-VEGF/cytotoxics/anti-PD-1 combination in lung cancer model.","authors":"Guillaume Sicard, Dorian Protzenko, Sarah Giacometti, Fabrice Barlési, Joseph Ciccolini, Raphaelle Fanciullino","doi":"10.20517/cdr.2023.146","DOIUrl":"10.20517/cdr.2023.146","url":null,"abstract":"<p><p><b>Background:</b> Many tumors are refractory to immune checkpoint inhibitors, but their combination with cytotoxics is expected to improve sensitivity. Understanding how and when cytotoxics best re-stimulate tumor immunity could help overcome resistance to immune checkpoint inhibitors. <b>Methods:</b> <i>In vivo</i> studies were performed in C57BL/6 mice grafted with immune-refractory LL/2 lung cancer model. A longitudinal immunomonitoring study on tumor, spleen, and blood after multiple treatments including Cisplatin, Pemetrexed, and anti-VEGF, either alone or in combination, was performed, spanning a period of up to 21 days, to determine the optimal time window during which immune checkpoint inhibitors should be added. Finally, an efficacy study was conducted comparing the antiproliferative performance of various schedules of anti-VEGF, Pemetrexed-Cisplatin doublet, plus anti-PD-1 (i.e., immunomonitoring-guided scheduling, concurrent dosing or a random sequence), as well as single agent anti-PD1. <b>Results:</b> Immunomonitoring showed marked differences between treatments, organs, and time points. However, harnessing tumor immunity (i.e., promoting CD8 T cells or increasing the T CD8/Treg ratio) started on D7 and peaked on D14 with the anti-VEGF followed by cytotoxics combination. Therefore, a 14-day delay between anti-VEGF/cytotoxic and anti-PD1 administration was considered the best sequence to test. Efficacy studies then confirmed that this sequence achieved higher antiproliferative efficacy compared to other treatment modalities (i.e., -71% in tumor volume compared to control). <b>Conclusions:</b> Anti-VEGF and cytotoxic agents show time-dependent immunomodulatory effects, suggesting that sequencing is a critical feature when combining these agents with immune checkpoint inhibitors. An efficacy study confirmed that sequencing treatments further enhance antiproliferative effects in lung cancer models compared to concurrent dosing and partly reverse the resistance to cytotoxics and anti-PD1.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circular RNA circNCOA3 promotes tumor progression and anti-PD-1 resistance in colorectal cancer. 环状 RNA circNCOA3 促进结直肠癌的肿瘤进展和抗 PD-1 抗性。
癌症耐药(英文) Pub Date : 2024-03-13 eCollection Date: 2024-01-01 DOI: 10.20517/cdr.2023.151
Dong-Liang Chen, Nuo Chen, Hui Sheng, Dong-Sheng Zhang
{"title":"Circular RNA circNCOA3 promotes tumor progression and anti-PD-1 resistance in colorectal cancer.","authors":"Dong-Liang Chen, Nuo Chen, Hui Sheng, Dong-Sheng Zhang","doi":"10.20517/cdr.2023.151","DOIUrl":"10.20517/cdr.2023.151","url":null,"abstract":"<p><p><b>Aim:</b> Circular RNAs (circRNAs) have been found to be involved in tumor progression, but their role in colorectal cancer (CRC) immune escape remains to be elucidated. <b>Methods:</b> circRNAs differentially expressed in responsive and resistant CRC tissues to programmed cell death 1 (PD-1) antibody therapy were identified by microarray analysis. The clinical and pathological significance of circNCOA3 was validated in a separate cohort of CRC samples. The function of circNCOA3 was explored experimentally. RNA immunoprecipitation and luciferase activity assays were conducted to identify downstream targets of circNCOA3. <b>Results:</b> The circNCOA3 was markedly overexpressed in CRC samples resistant to PD-1 blockade. circNCOA3 expression was significantly correlated with adverse tumor phenotypes and poor outcomes in CRC patients. Knockdown of circNCOA3 expression markedly suppressed the proliferative and invasive capability of CRC cells. Moreover, knockdown of circNCOA3 increased the proportion of CD8<sup>+</sup> T cells while decreasing the proportion of myeloid-derived suppressor cells (MDSCs). Knockdown of circNCOA3 inhibited tumor growth and increased the sensitivity to PD-1 antibody treatment in mouse tumor models. Further studies revealed that circNCOA3 acted as a competing endogenous RNA (ceRNA) for miR-203a-3p.1 to influence the level of CXCL1. <b>Conclusion:</b> Our findings indicate that circNCOA3 might be useful as a potential biomarker to predict the efficacy and prognosis of CRC patients treated with anti-PD-1 therapy.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Nrf2/Keap1 signaling pathway in cancer drug resistance by galectin-1: cellular and molecular implications. galectin-1在癌症耐药性中对Nrf2/Keap1信号通路的调控:细胞和分子意义。
癌症耐药(英文) Pub Date : 2024-02-29 eCollection Date: 2024-01-01 DOI: 10.20517/cdr.2023.79
İlhan Yaylim, Melek Aru, Ammad Ahmad Farooqi, Mehmet Tolgahan Hakan, Brigitta Buttari, Marzia Arese, Luciano Saso
{"title":"Regulation of Nrf2/Keap1 signaling pathway in cancer drug resistance by galectin-1: cellular and molecular implications.","authors":"İlhan Yaylim, Melek Aru, Ammad Ahmad Farooqi, Mehmet Tolgahan Hakan, Brigitta Buttari, Marzia Arese, Luciano Saso","doi":"10.20517/cdr.2023.79","DOIUrl":"10.20517/cdr.2023.79","url":null,"abstract":"<p><p>Oxidative stress is characterized by the deregulation of the redox state in the cells, which plays a role in the initiation of various types of cancers. The activity of galectin-1 (Gal-1) depends on the cell redox state and the redox state of the microenvironment. Gal-1 expression has been related to many different tumor types, as it plays important roles in several processes involved in cancer progression, such as apoptosis, cell migration, adhesion, and immune response. The erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling pathway is a crucial mechanism involved in both cell survival and cell defense against oxidative stress. In this review, we delve into the cellular and molecular roles played by Gal-1 in the context of oxidative stress onset in cancer cells, particularly focusing on its involvement in activating the Nrf2/Keap1 signaling pathway. The emerging evidence concerning the anti-apoptotic effect of Gal-1, together with its ability to sustain the activation of the Nrf2 pathway in counteracting oxidative stress, supports the role of Gal-1 in the promotion of tumor cells proliferation, immuno-suppression, and anti-tumor drug resistance, thus highlighting that the inhibition of Gal-1 emerges as a potential strategy for the restraint and regression of tumor progression. Overall, a deeper understanding of the multi-functionality and disease-specific expression profiling of Gal-1 will be crucial for the design and development of novel Gal-1 inhibitors as anticancer agents. Excitingly, although it is still understudied, the ever-growing knowledge of the sophisticated interplay between Gal-1 and Nrf2/Keap1 will enable researchers to gain valuable insights into the underlying causes of carcinogenesis and metastasis.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. 卵巢癌化疗耐药性发展过程中的新角色:卵巢癌干细胞、非编码 RNA 和核受体。
癌症耐药(英文) Pub Date : 2024-02-28 eCollection Date: 2024-01-01 DOI: 10.20517/cdr.2023.152
Shahil Alam, Pankaj Kumar Giri
{"title":"Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors.","authors":"Shahil Alam, Pankaj Kumar Giri","doi":"10.20517/cdr.2023.152","DOIUrl":"10.20517/cdr.2023.152","url":null,"abstract":"<p><p>Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging genomics, transcriptomics and epigenomics to understand chemoimmunotherapy resistance in chronic lymphocytic leukemia. 利用基因组学、转录组学和表观基因组学了解慢性淋巴细胞白血病的化疗免疫治疗耐药性。
癌症耐药(英文) Pub Date : 2024-02-28 eCollection Date: 2024-01-01 DOI: 10.20517/cdr.2023.98
Shin Yeu Ong, Lili Wang
{"title":"Leveraging genomics, transcriptomics and epigenomics to understand chemoimmunotherapy resistance in chronic lymphocytic leukemia.","authors":"Shin Yeu Ong, Lili Wang","doi":"10.20517/cdr.2023.98","DOIUrl":"10.20517/cdr.2023.98","url":null,"abstract":"<p><p>Patients with chronic lymphocytic leukemia (CLL) have differing clinical outcomes. Recent advances integrating multi-omic data have uncovered molecular subtypes in CLL with different prognostic implications and may allow better prediction of therapy response. While finite-duration chemoimmunotherapy (CIT) has enabled deep responses and prolonged duration of responses in the past, the advent of novel targeted therapy for the treatment of CLL has dramatically changed the therapeutic landscape. In this review, we discuss the latest genomic, transcriptomic, and epigenetic alterations regarded as major drivers of resistance to CIT in CLL. Further advances in genomic medicine will allow for better prediction of response to therapy and provide the basis for rational selection of therapy for long-term remissions with minimal toxicity.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia. 活性氧及其在急性髓性白血病发病机制和抗药性中的作用。
癌症耐药(英文) Pub Date : 2024-02-22 eCollection Date: 2024-01-01 DOI: 10.20517/cdr.2023.125
Jamshid Sorouri Khorashad, Sian Rizzo, Alex Tonks
{"title":"Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia.","authors":"Jamshid Sorouri Khorashad, Sian Rizzo, Alex Tonks","doi":"10.20517/cdr.2023.125","DOIUrl":"10.20517/cdr.2023.125","url":null,"abstract":"<p><p>Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. 糖原合成酶激酶 3β:胰腺癌化疗抗药性、侵袭能力和癌症干细胞的纽带。
癌症耐药(英文) Pub Date : 2024-01-31 eCollection Date: 2024-01-01 DOI: 10.20517/cdr.2023.84
Masahiro Uehara, Takahiro Domoto, Satoshi Takenaka, Osamu Takeuchi, Takeo Shimasaki, Tomoharu Miyashita, Toshinari Minamoto
{"title":"Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer.","authors":"Masahiro Uehara, Takahiro Domoto, Satoshi Takenaka, Osamu Takeuchi, Takeo Shimasaki, Tomoharu Miyashita, Toshinari Minamoto","doi":"10.20517/cdr.2023.84","DOIUrl":"10.20517/cdr.2023.84","url":null,"abstract":"<p><p>The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ritonavir reverses resistance to docetaxel and cabazitaxel in prostate cancer cells with acquired resistance to docetaxel. 利托那韦能逆转前列腺癌细胞对多西他赛和卡巴他赛的耐药性。
癌症耐药(英文) Pub Date : 2024-01-31 eCollection Date: 2024-01-01 DOI: 10.20517/cdr.2023.136
Eric van der Putten, Katja Wosikowski, Jos H Beijnen, Gábor Imre, Colin R Freund
{"title":"Ritonavir reverses resistance to docetaxel and cabazitaxel in prostate cancer cells with acquired resistance to docetaxel.","authors":"Eric van der Putten, Katja Wosikowski, Jos H Beijnen, Gábor Imre, Colin R Freund","doi":"10.20517/cdr.2023.136","DOIUrl":"10.20517/cdr.2023.136","url":null,"abstract":"<p><p><b>Aim:</b> Docetaxel is a microtubule-stabilizing drug used for the treatment of several cancers, including prostate cancer. Resistance to docetaxel can either occur through intrinsic resistance or develop under therapeutic pressure, i.e., acquired resistance. A possible explanation for the occurrence of acquired resistance to docetaxel is increased drug efflux via P-glycoprotein (P-gp) drug transporters. <b>Methods:</b> We have generated docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8 by exposing parental cell lines DU-145DOC and 22Rv1 to increasing levels of docetaxel. Gene expression levels between DU-145DOC10 and 22Rv1DOC8 were compared with those of their respective originator cell lines. Both parental and resistant cell lines were treated with the taxane drugs docetaxel and cabazitaxel in combination with the P-gp/CYP3A4 inhibitor ritonavir and the P-gp inhibitor elacridar. <b>Results:</b> In the docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8, the ABCB1 (P-gp) gene was highly up-regulated. Expression of the P-gp protein was also significantly increased in the docetaxel-resistant cell lines in a Western blotting assay. The addition of ritonavir to docetaxel resulted in a return of the sensitivity to docetaxel in the DU-145DOC10 and 22Rv1DOC8 to a level similar to the sensitivity in the originator cells. We found that these docetaxel-resistant cell lines could also be re-sensitized to cabazitaxel in a similar manner. In a Caco-2 P-gp transporter assay, functional inhibition of P-gp-mediated transport of docetaxel with ritonavir was demonstrated. <b>Conclusion:</b> Our results demonstrate that ritonavir restores sensitivity to both docetaxel and cabazitaxel in docetaxel-resistant cell lines, most likely by inhibiting P-gp-mediated drug efflux.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supramolecular host-guest nanosystems for overcoming cancer drug resistance. 用于克服癌症抗药性的超分子主客体纳米系统。
IF 4.6
癌症耐药(英文) Pub Date : 2023-11-22 eCollection Date: 2023-01-01 DOI: 10.20517/cdr.2023.77
Sha Wu, Miaomiao Yan, Minghao Liang, Wenzhi Yang, Jingyu Chen, Jiong Zhou
{"title":"Supramolecular host-guest nanosystems for overcoming cancer drug resistance.","authors":"Sha Wu, Miaomiao Yan, Minghao Liang, Wenzhi Yang, Jingyu Chen, Jiong Zhou","doi":"10.20517/cdr.2023.77","DOIUrl":"10.20517/cdr.2023.77","url":null,"abstract":"<p><p>Cancer drug resistance has become one of the main challenges for the failure of chemotherapy, greatly limiting the selection and use of anticancer drugs and dashing the hopes of cancer patients. The emergence of supramolecular host-guest nanosystems has brought the field of supramolecular chemistry into the nanoworld, providing a potential solution to this challenge. Compared with conventional chemotherapeutic platforms, supramolecular host-guest nanosystems can reverse cancer drug resistance by increasing drug uptake, reducing drug efflux, activating drugs, and inhibiting DNA repair. Herein, we summarize the research progress of supramolecular host-guest nanosystems for overcoming cancer drug resistance and discuss the future research direction in this field. It is hoped that this review will provide more positive references for overcoming cancer drug resistance and promoting the development of supramolecular host-guest nanosystems.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 4","pages":"805-827"},"PeriodicalIF":4.6,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia. 揭示急性髓系白血病免疫检查点抑制剂的T细胞逃避机制。
癌症耐药(英文) Pub Date : 2023-09-26 eCollection Date: 2023-01-01 DOI: 10.20517/cdr.2023.39
Lindsay Gurska, Kira Gritsman
{"title":"Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia.","authors":"Lindsay Gurska, Kira Gritsman","doi":"10.20517/cdr.2023.39","DOIUrl":"10.20517/cdr.2023.39","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a heterogeneous and aggressive hematologic malignancy that is associated with a high relapse rate and poor prognosis. Despite advances in immunotherapies in solid tumors and other hematologic malignancies, AML has been particularly difficult to treat with immunotherapies, as their efficacy is limited by the ability of leukemic cells to evade T cell recognition. In this review, we discuss the common mechanisms of T cell evasion in AML: (1) increased expression of immune checkpoint molecules; (2) downregulation of antigen presentation molecules; (3) induction of T cell exhaustion; and (4) creation of an immunosuppressive environment through the increased frequency of regulatory T cells. We also review the clinical investigation of immune checkpoint inhibitors (ICIs) in AML. We discuss the limitations of ICIs, particularly in the context of T cell evasion mechanisms in AML, and we describe emerging strategies to overcome T cell evasion, including combination therapies. Finally, we provide an outlook on the future directions of immunotherapy research in AML, highlighting the need for a more comprehensive understanding of the complex interplay between AML cells and the immune system.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"6 3","pages":"674-687"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信