Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia.

IF 4.6 Q1 ONCOLOGY
癌症耐药(英文) Pub Date : 2024-02-22 eCollection Date: 2024-01-01 DOI:10.20517/cdr.2023.125
Jamshid Sorouri Khorashad, Sian Rizzo, Alex Tonks
{"title":"Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia.","authors":"Jamshid Sorouri Khorashad, Sian Rizzo, Alex Tonks","doi":"10.20517/cdr.2023.125","DOIUrl":null,"url":null,"abstract":"<p><p>Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"5"},"PeriodicalIF":4.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/cdr.2023.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation (OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the microenvironment. This review summarizes these challenges and the recent progress in this field.

活性氧及其在急性髓性白血病发病机制和抗药性中的作用。
急性髓性白血病(AML)患者在短期临床治疗反应后复发是治疗面临的主要挑战。白血病干细胞(LSC)是复发的来源,人们一直在研究它们的代谢偏好及其在复发时的变化。由于白血病干细胞依赖氧化磷酸化(OXPHOS)来获取能量,活性氧(ROS)作为 OXPHOS 的副产物,已被用于研究其在急性髓细胞性白血病标准疗法有效性中的作用。在一部分急性髓细胞性白血病患者中,由烟酰胺腺嘌呤二核苷酸磷酸氧化酶产生的非线粒体 ROS 水平升高,增加了研究 ROS 的复杂性。尽管有各种研究介绍了 ROS 对急性髓细胞性白血病发病机制的贡献、抗药性及其作为靶点的抑制或激活,但尚未形成一个能清楚解释其在急性髓细胞性白血病中作用的模型。这是由于急性髓细胞性白血病的异质性、ROS产生的动态性(受治疗类型、细胞分化状态、线粒体活性等因素的影响)、非线粒体ROS产生的异质性以及它们与微环境相互作用的现有数据有限。本综述总结了这些挑战以及该领域的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信