{"title":"Sophisticated roles of tumor microenvironment in resistance to immune checkpoint blockade therapy in hepatocellular carcinoma.","authors":"Yi-Zhe Zhang, Yunshu Ma, Ensi Ma, Xizhi Chen, Yue Zhang, Baobing Yin, Jing Zhao","doi":"10.20517/cdr.2024.165","DOIUrl":"10.20517/cdr.2024.165","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) remains a serious threat to global health, with rising incidence and mortality rates. Therapeutic options for advanced HCC are quite limited, and the overall prognosis remains poor. Recent advancements in immunotherapy, particularly immune-checkpoint blockade (ICB) targeting anti-PD1/PD-L1 and anti-CTLA4, have facilitated a paradigm shift in cancer treatment, demonstrating substantial survival benefits across various cancer types, including HCC. However, only a subset of HCC patients exhibit a favorable response to ICB therapy, and its efficacy is often hindered by the development of resistance. There are many studies to explore the underlying mechanisms of ICB response. In this review, we compiled the latest progression in immunotherapies for HCC and systematically summarized the sophisticated mechanisms by which components of the tumor microenvironment (TME) regulate resistance to ICB therapy. Additionally, we also outlined some scientific rationale strategies to boost antitumor immunity and enhance the efficacy of ICB in HCC. These insights may serve as a roadmap for future research and help improve outcomes for HCC patients.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"10"},"PeriodicalIF":4.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
癌症耐药(英文)Pub Date : 2025-02-19eCollection Date: 2025-01-01DOI: 10.20517/cdr.2024.173
Adam Khorasanchi, Feng Hong, Yuanquan Yang, Eric A Singer, Peng Wang, Mingjia Li, Linghua Zheng, Paul Monk, Amir Mortazavi, Lingbin Meng
{"title":"Overcoming drug resistance in castrate-resistant prostate cancer: current mechanisms and emerging therapeutic approaches.","authors":"Adam Khorasanchi, Feng Hong, Yuanquan Yang, Eric A Singer, Peng Wang, Mingjia Li, Linghua Zheng, Paul Monk, Amir Mortazavi, Lingbin Meng","doi":"10.20517/cdr.2024.173","DOIUrl":"10.20517/cdr.2024.173","url":null,"abstract":"<p><p>Metastatic castration-resistant prostate cancer (mCRPC) is driven by a complex network of resistance mechanisms against standard-of-care therapies, resulting in poor long-term outcomes. This review offers a uniquely comprehensive and integrative perspective on these resistance pathways, systematically examining both androgen receptor (AR)-dependent factors (including AR overexpression, point mutations, glucocorticoid receptor signaling, splice variants, post-translational modifications, altered coregulators, and intratumoral hormone biosynthesis) and AR-independent pathways (such as neuroendocrine differentiation, lineage plasticity, and alternative growth factor signaling). We also highlight resistance mechanisms influencing immunotherapy, chemotherapy, radiopharmaceutical therapy and targeted therapy. By synthesizing emerging insights across these domains, this review not only clarifies the underlying biology of mCRPC resistance but also identifies key leverage points for more effective interventions. Building on this foundation, we propose a forward-looking framework for overcoming mCRPC drug resistance, emphasizing the importance of biomarker-guided patient selection, combination strategies that simultaneously target multiple resistance mechanisms, and novel therapies under investigation. These recommendations are intended to guide future clinical trial designs and research priorities that move beyond incremental improvements. Ultimately, this comprehensive synthesis aims to serve as a resource for clinicians and researchers to accelerate the development of durable, precision-based treatment strategies in mCRPC.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"9"},"PeriodicalIF":4.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring YAP1-related TIME in SCLC: implications for survival and treatment response to immuno-chemotherapy.","authors":"Yu-Qing Chen, Jia-Xiong Tan, Ling-Ling Gao, Jia-Xing Yang, Jie Huang, Jin-Ji Yang, Qiang Zhao","doi":"10.20517/cdr.2024.177","DOIUrl":"10.20517/cdr.2024.177","url":null,"abstract":"<p><p><b>Aim:</b> Small-cell lung cancer (SCLC) is usually diagnosed as an advanced stage with a poor outcome. SCLC has limited response to immunotherapy due to the absence or lack of immune cell infiltration, so studying its tumor immune microenvironment (TIME) is essential. <b>Methods:</b> The study involved patients with extensive-stage small-cell lung cancer (ES-SCLC) diagnosed at the Guangdong Lung Cancer Institute between January 2018 and April 2022 who had received the atezolizumab/carboplatin/etoposide (ECT) treatment. We used multi-immunohistochemistry (mIHC) to assess the prognostic value of YAP1 and TIME in SCLC, with results confirmed using public data. <b>Results:</b> 15 patients with sufficient baseline biopsy samples were included in this study. The total population of YAP1-positive cells is inversely related to progression-free survival (PFS) and shows a potential negative correlation with overall survival (OS). CD56-positive cells are the primary components of TIME in SCLC tumor parenchyma and stroma. The total population and cell density of YAP1-positive cells are significantly positively correlated with CD4-positive cells. Furthermore, in the tumor parenchyma, both the proportion and the cell density of YAP1-positive cells are positively correlated with that of FOXP3-positive cells. The total population of CD56-positive cells showed a negative correlation trend with YAP1-positive cells but without significant difference. <b>Conclusion:</b> YAP1 has shown prognostic value in SCLC patients receiving ECT regimen treatment. The high expression level of YAP1 seems related to the inhibitory TIME. However, some prospective studies with larger populations are warranted.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"8"},"PeriodicalIF":4.6,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance.","authors":"Chahat Suri, Babita Pande, Lakkakula Suhasini Sahithi, Shashikant Swarnkar, Tuneer Khelkar, Henu Kumar Verma","doi":"10.20517/cdr.2024.164","DOIUrl":"10.20517/cdr.2024.164","url":null,"abstract":"<p><p>Metabolic reprogramming within the tumor microenvironment (TME) plays a critical role in driving drug resistance in gastrointestinal cancers (GI), particularly through the pathways of fatty acid oxidation and glycolysis. Cancer cells often rewire their metabolism to sustain growth and reshape the TME, creating conditions such as nutrient depletion, hypoxia, and acidity that impair antitumor immune responses. Immune cells within the TME also undergo metabolic alterations, frequently adopting immunosuppressive phenotypes that promote tumor progression and reduce the efficacy of therapies. The competition for essential nutrients, particularly glucose, between cancer and immune cells compromises the antitumor functions of effector immune cells, such as T cells. Additionally, metabolic by-products like lactate and kynurenine further suppress immune activity and promote immunosuppressive populations, including regulatory T cells and M2 macrophages. Targeting metabolic pathways such as fatty acid oxidation and glycolysis presents new opportunities to overcome drug resistance and improve therapeutic outcomes in GI cancers. Modulating these key pathways has the potential to reinvigorate exhausted immune cells, shift immunosuppressive cells toward antitumor phenotypes, and enhance the effectiveness of immunotherapies and other treatments. Future strategies will require continued research into TME metabolism, the development of novel metabolic inhibitors, and clinical trials evaluating combination therapies. Identifying and validating metabolic biomarkers will also be crucial for patient stratification and treatment monitoring. Insights into metabolic reprogramming in GI cancers may have broader implications across multiple cancer types, offering new avenues for improving cancer treatment.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"7"},"PeriodicalIF":4.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11883236/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143574819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
癌症耐药(英文)Pub Date : 2025-01-25eCollection Date: 2025-01-01DOI: 10.20517/cdr.2024.125
Bernhard Biersack, Bianca Nitzsche, Michael Höpfner
{"title":"Histone deacetylases in the regulation of cell death and survival mechanisms in resistant BRAF-mutant cancers.","authors":"Bernhard Biersack, Bianca Nitzsche, Michael Höpfner","doi":"10.20517/cdr.2024.125","DOIUrl":"10.20517/cdr.2024.125","url":null,"abstract":"<p><p>Small-molecule BRAF inhibitors (e.g., vemurafenib and dabrafenib) and MEK (MAPK/ERK) kinases inhibitors (e.g., trametinib) have distinctly improved the survival of patients suffering from BRAF-mutant cancers such as melanomas. However, the emergence of resistance to BRAF and MEK inhibitor-based melanoma therapy, as well as the reduced sensitivity of other BRAF-mutant cancers such as CRC, poses a considerable clinical problem. For instance, the reactivation of MAPK/ERK signaling hampering cell death induction mechanisms was responsible for BRAF inhibitor resistance, which can be correlated with distinct post-translational and epigenetic processes. Histone deacetylases (HDACs) are prominent epigenetic drug targets and some HDAC inhibitors have already been clinically approved for the therapy of various blood cancers. In addition, several HDACs were identified, which also play a crucial role in the drug resistance of BRAF-mutant cancers. Consequently, inhibition of HDACs was described as a promising approach to overcome resistance. This review summarizes the influence of HDACs (Zn<sup>2+</sup>-dependent HDACs and NAD<sup>+</sup>-dependent sirtuins) on BRAF-mutant cancers and BRAF inhibitor resistance based on upregulated survival mechanisms and the prevention of tumor cell death. Moreover, it outlines reasonable HDAC-based strategies to circumvent BRAF-associated resistance mechanisms based on downregulated cell death mechanisms.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"6"},"PeriodicalIF":4.6,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
癌症耐药(英文)Pub Date : 2025-01-22eCollection Date: 2025-01-01DOI: 10.20517/cdr.2024.169
Juan Miguel Cejalvo Andújar, Francisco Ayala de la Peña, Mireia Margeli Vila, Javier Pascual, Pablo Tolosa, Cristina Pages, Mónica Cuenca, Ángel Guerrero Zotano
{"title":"Optimizing therapeutic approaches for HR+/HER2- advanced breast cancer: clinical perspectives on biomarkers and treatment strategies post-CDK4/6 inhibitor progression.","authors":"Juan Miguel Cejalvo Andújar, Francisco Ayala de la Peña, Mireia Margeli Vila, Javier Pascual, Pablo Tolosa, Cristina Pages, Mónica Cuenca, Ángel Guerrero Zotano","doi":"10.20517/cdr.2024.169","DOIUrl":"10.20517/cdr.2024.169","url":null,"abstract":"<p><p>This review offers an expert perspective on biomarkers, CDK4/6 inhibitor efficacy, and therapeutic approaches for managing hormone receptor-positive (HR+), human epidermal growth factor receptor-negative (HER2-) advanced breast cancer (ABC), particularly after CDK4/6 inhibitor progression. Key trials have demonstrated that combining CDK4/6 inhibitors with endocrine therapy (ET) significantly improves progression-free survival (PFS), with median durations ranging from 14.8 to 26.7 months, and overall survival (OS), with median durations reaching up to 53.7 months. Actionable biomarkers, such as <i>PIK3CA</i> and <i>ESR1</i> mutations, have emerged as pivotal tools to guide second-line treatment decisions, enabling the use of targeted therapies like alpelisib and elacestrant and emphasizing the important role of biomarkers in guiding the selection of therapy. This overview aims to provide clinicians with a practical and up-to-date framework to inform treatment decisions and improve patient care in the context of this challenging disease. Additionally, we review emerging biomarkers and novel treatment strategies to address this difficult clinical landscape.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"5"},"PeriodicalIF":4.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
癌症耐药(英文)Pub Date : 2025-01-16eCollection Date: 2025-01-01DOI: 10.20517/cdr.2024.167
Heng Zhang, Hailin Tang, Wenling Tu, Fu Peng
{"title":"Regulatory role of non-coding RNAs in 5-Fluorouracil resistance in gastrointestinal cancers.","authors":"Heng Zhang, Hailin Tang, Wenling Tu, Fu Peng","doi":"10.20517/cdr.2024.167","DOIUrl":"10.20517/cdr.2024.167","url":null,"abstract":"<p><p>Gastrointestinal (GI) cancers are becoming a growing cause of morbidity and mortality globally, posing a significant risk to human life and health. The main treatment for this kind of cancer is chemotherapy based on 5-fluorouracil (5-FU). However, the issue of 5-FU resistance is becoming increasingly prominent, which greatly limits its effectiveness in clinical treatment. Recently, numerous studies have disclosed that some non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), exert remarkable physiological functions within cells. In addition, these ncRNAs can also serve as important information communication molecules in the tumor microenvironment and regulate tumor chemotherapy resistance. In particular, they have been shown to play multiple roles in regulating 5-FU resistance in GI cancers. Herein, we summarize the targets, pathways, and mechanisms involved in regulating 5-FU resistance by ncRNAs and briefly discuss the application potential of ncRNAs as biomarkers or therapeutic targets for 5-FU resistance in GI cancers, aiming to offer a reference to tackle issues related to 5-FU resistance.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"4"},"PeriodicalIF":4.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
癌症耐药(英文)Pub Date : 2025-01-14eCollection Date: 2025-01-01DOI: 10.20517/cdr.2024.91
Zilu Chen, Kun Mei, Foxing Tan, Yuheng Zhou, Haolin Du, Min Wang, Renjun Gu, Yan Huang
{"title":"Integrative multi-omics analysis for identifying novel therapeutic targets and predicting immunotherapy efficacy in lung adenocarcinoma.","authors":"Zilu Chen, Kun Mei, Foxing Tan, Yuheng Zhou, Haolin Du, Min Wang, Renjun Gu, Yan Huang","doi":"10.20517/cdr.2024.91","DOIUrl":"10.20517/cdr.2024.91","url":null,"abstract":"<p><p><b>Aim:</b> Lung adenocarcinoma (LUAD), the most prevalent subtype of non-small cell lung cancer (NSCLC), presents significant clinical challenges due to its high mortality and limited therapeutic options. The molecular heterogeneity and the development of therapeutic resistance further complicate treatment, underscoring the need for a more comprehensive understanding of its cellular and molecular characteristics. This study sought to delineate novel cellular subpopulations and molecular subtypes of LUAD, identify critical biomarkers, and explore potential therapeutic targets to enhance treatment efficacy and patient prognosis. <b>Methods:</b> An integrative multi-omics approach was employed to incorporate single-cell RNA sequencing (scRNA-seq), bulk transcriptomic analysis, and genome-wide association study (GWAS) data from multiple LUAD patient cohorts. Advanced computational approaches, including Bayesian deconvolution and machine learning algorithms, were used to comprehensively characterize the tumor microenvironment, classify LUAD subtypes, and develop a robust prognostic model. <b>Results:</b> Our analysis identified eleven distinct cellular subpopulations within LUAD, with epithelial cells predominating and exhibiting high mutation frequencies in Tumor Protein 53 (<i>TP53)</i> and Titin (<i>TTN)</i> genes. Two molecular subtypes of LUAD [consensus subtype (CS)1 and CS2] were identified, each showing distinct immune landscapes and clinical outcomes. The CS2 subtype, characterized by increased immune cell infiltration, demonstrated a more favorable prognosis and higher sensitivity to immunotherapy. Furthermore, a multi-omics-driven machine learning signature (MOMLS) identified ribonucleotide reductase M1 (RRM1) as a critical biomarker associated with chemotherapy response. Based on this model, several potential therapeutic agents targeting different subtypes were proposed. <b>Conclusion:</b> This study presents a comprehensive multi-omics framework for understanding the molecular complexity of LUAD, providing insights into cellular heterogeneity, molecular subtypes, and potential therapeutic targets. Differential sensitivity to immunotherapy among various cellular subpopulations was identified, paving the way for future immunotherapy-focused research.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"3"},"PeriodicalIF":4.6,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cancer-associated fibroblast-derived extracellular vesicles: regulators and therapeutic targets in the tumor microenvironment.","authors":"Jindong Xie, Xinmei Lin, Xinpei Deng, Hailin Tang, Yutian Zou, Wenkuan Chen, Xiaoming Xie","doi":"10.20517/cdr.2024.152","DOIUrl":"10.20517/cdr.2024.152","url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) constitute a critical component of the tumor microenvironment (TME). CAFs can be reprogrammed by cancer cells, leading to the production of extracellular vesicles (EVs). These EVs serve as carriers for bioactive substances, including proteins, nucleic acids, and metabolic products, thereby facilitating tumor progression. CAF-derived EVs exert substantial influence on tumor cell proliferation, invasion, and metastasis, the immunological environment, and the processes of lymphangiogenesis and angiogenesis. Despite their potential as non-invasive biomarkers and therapeutic delivery vehicles, the clinical application of CAF-derived EVs is currently limited by challenges in purification and precise targeting. This review delineates the diverse roles of CAF-derived EVs in tumor growth, metastasis, and immune evasion within the TME.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"2"},"PeriodicalIF":4.6,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
癌症耐药(英文)Pub Date : 2025-01-06eCollection Date: 2025-01-01DOI: 10.20517/cdr.2024.151
Yang Yang, Simin Yu, Wanyao Liu, Yi Zhuo, Chunrun Qu, Yu Zeng
{"title":"Ferroptosis-related signaling pathways in cancer drug resistance.","authors":"Yang Yang, Simin Yu, Wanyao Liu, Yi Zhuo, Chunrun Qu, Yu Zeng","doi":"10.20517/cdr.2024.151","DOIUrl":"10.20517/cdr.2024.151","url":null,"abstract":"<p><p>Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation. This process is regulated by signaling pathways associated with redox balance, iron metabolism, and lipid metabolism. Cancer cells' increased iron demand makes them especially susceptible to ferroptosis, significantly influencing cancer development, therapeutic response, and metastasis. Recent findings indicate that cancer cells can evade ferroptosis by downregulating key signaling pathways related to this process, contributing to drug resistance. This underscores the possibility of modulating ferroptosis as an approach to counteract drug resistance and enhance therapeutic efficacy. This review outlines the signaling pathways involved in ferroptosis and their interactions with cancer-related signaling pathways. We also highlight the current understanding of ferroptosis in cancer drug resistance, offering insights into how targeting ferroptosis can provide novel therapeutic approaches for drug-resistant cancers. Finally, we explore the potential of ferroptosis-inducing compounds and examine the challenges and opportunities for drug development in this evolving field.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"1"},"PeriodicalIF":4.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}