{"title":"Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer.","authors":"Masahiro Uehara, Takahiro Domoto, Satoshi Takenaka, Osamu Takeuchi, Takeo Shimasaki, Tomoharu Miyashita, Toshinari Minamoto","doi":"10.20517/cdr.2023.84","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"4"},"PeriodicalIF":4.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/cdr.2023.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.