{"title":"Drawing meaning from student-generated drawings: exploring chemistry teachers’ noticing†","authors":"Hanna Stammes and Lesley de Putter-Smits","doi":"10.1039/D3RP00253E","DOIUrl":"https://doi.org/10.1039/D3RP00253E","url":null,"abstract":"<p >This study explored experienced chemistry teachers’ noticing when using student-generated drawings as evidence. While drawings of chemical entities and processes may offer valuable information on student thinking, little is known about how teachers draw meaning from student drawings. To explore this area, we investigated three experienced chemistry teachers’ noticing. Teacher noticing refers to the processes through which teachers pay attention to certain observable information, and interpret what they attend to. In this study, we examined what types of drawing features stood out to teachers, and what analytic approaches (or stances) they used. We collected data on teachers’ in-the-moment noticing (within their active classrooms), and on their delayed noticing (when teachers reviewed drawings after class). The findings demonstrate teachers’ ability to attend to chemistry-specific details in students’ drawings in both noticing settings. Teachers recognised several visual forms in student drawings, depictions of quantities, chemical entities at different length scales, and various chemical properties and behaviours. Findings furthermore showcase how two common analytic approaches (<em>i.e.</em> evaluation and sense making) can manifest in a drawing context. The study's results, tied to real classroom settings, yield ways of looking at student drawings that may help (beginning) chemistry teachers to leverage drawing activities as a window into student thinking. The study's analytic framework and detailed characterisations could furthermore be used by teacher educators and researchers who are seeking to support or examine teacher noticing as a key aspect of (chemistry) teacher expertise.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 2","pages":" 494-507"},"PeriodicalIF":2.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/rp/d3rp00253e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Megan C. Connor, Ally R. Parvin and Alex F. Browning
{"title":"Exploring the association between communicating about NMR spectra and acute awareness of stigma attached to one's gender among women in postsecondary organic chemistry courses","authors":"Megan C. Connor, Ally R. Parvin and Alex F. Browning","doi":"10.1039/D4RP00193A","DOIUrl":"https://doi.org/10.1039/D4RP00193A","url":null,"abstract":"<p >Women report that they must conform to masculine behavioral norms to progress in chemistry, with the necessity of adopting such norms pushing them from the field. Advancing gender-based equity within chemistry will thus entail identifying these norms, deconstructing them, and, ultimately, redefining them to be inclusive of all individuals. To support these efforts, this study investigates whether engaging in a traditional nuclear magnetic resonance (NMR) communication task <em>versus</em> a similar task with multiple identity-safe cues differentially impacts individuals’ gender stigma consciousness, or the extent to which individuals are acutely aware of stigma attached to their gender. Undergraduates (<em>n</em> = 543) enrolled in Organic Chemistry II at a large university in the southeastern United States completed an online NMR communication task followed by a version of the Social Identities and Attitudes Scale (SIAS) modified for use in chemistry learning environments (<em>i.e.</em>, the SIAS-Chem). Participants were randomly assigned to one of two prompt groups prior to task completion: one group was told the task evaluates their NMR communication ability, and the other group was told the task was non-evaluative and used to understand the different ways people communicate. The results provide initial psychometric evidence of the SIAS-Chem's functionality and measurement invariance across prompt groups, providing preliminary support for its use in identifying chemistry practices that are potentially exclusionary of women. Further, women who were told the task evaluates NMR communication ability reported greater gender stigma consciousness on the SIAS-Chem compared to women who were told the task was non-evaluative, while there is no evidence of men scoring differently across prompts. Gender stigma consciousness was also associated with confidence during task completion among women who were told the task was non-evaluative. The findings have implications for the design of equitable assessments and instruction on NMR spectroscopy and future research on communication styles in chemistry.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 2","pages":" 508-531"},"PeriodicalIF":2.6,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benedicta Donkor, Melissa A. Collini and Jordan Harshman
{"title":"Doctoral education in chemistry: faculty perspectives on programmatic elements’ goals and outcomes†","authors":"Benedicta Donkor, Melissa A. Collini and Jordan Harshman","doi":"10.1039/D4RP00308J","DOIUrl":"https://doi.org/10.1039/D4RP00308J","url":null,"abstract":"<p >This qualitative study investigates the goals and outcomes of the individual programmatic elements within US chemistry doctoral programs, based on faculty perspectives. Forty-six faculty participants were interviewed using an interview protocol that was refined through iterative input and consensus building. Faculty perspectives in this study identifies several programmatic elements—such as research, coursework, lab rotations, candidacy process, and teaching assistantship—and explores the goals and outcomes of each. While the program's structure aims to incorporate essential workforce skills as explicit goals and outcomes, findings indicate that this integration often remains questionable. Further analysis of the goals and outcomes yielded three main insights: there is a misalignment between stated goals and enacted practices, necessitating a holistic reform approach to align goals of programmatic elements with students’ career goals and program goals; the structure of some programmatic elements often causes stress and frustration, highlighting the importance of improved integration and support; significant issues with certainty of the goals and outcomes of programmatic elements were identified, suggesting systemic problems that could lead to ineffective education. Addressing these issues through enhanced clarity, alignment, and practical training is vital for improving the experience of doctoral education in chemistry and better preparing students for their careers. While this study focused on US chemistry doctoral programs, the findings offer a framework for improving doctoral programs by addressing misalignments, unclear goals and outcomes, and the integration of real-world skills, providing insights that are applicable across diverse global educational contexts.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 2","pages":" 476-493"},"PeriodicalIF":2.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anggiyani Ratnaningtyas Eka Nugraheni and Niwat Srisawasdi
{"title":"Development of pre-service chemistry teachers’ knowledge of technological integration in inquiry-based learning to promote chemistry core competencies†","authors":"Anggiyani Ratnaningtyas Eka Nugraheni and Niwat Srisawasdi","doi":"10.1039/D4RP00160E","DOIUrl":"https://doi.org/10.1039/D4RP00160E","url":null,"abstract":"<p >The Technological Pedagogical and Content Knowledge (TPACK) framework is a cornerstone in teacher education, equipping educators with the skills to effectively integrate technology into their teaching practices. However, there is a noticeable research gap in the specific application of TPACK training to enhance chemistry core competencies (CCCs). This study, a collaborative effort with 32 Indonesian pre-service chemistry teachers (28 females and four males) from a public university, sets out to fill this gap by exploring the development of their knowledge of technological integration, with a focus on promoting core competencies in chemistry. We designed and implemented a TPACK-CCCs training intervention, a beacon of hope in teacher education, to foster both declarative and procedural knowledge in a technology-infused inquiry learning environment in chemistry. A mixed-methods approach was employed, involving pre- and post-intervention assessments to measure changes in declarative and procedural knowledge framed with TPACK through a multiple-choice TPACK test and chemistry competencies lesson plan design. The results brought about significant improvements in the pre-service teachers’ specific and overall TPACK. These findings paint a promising picture, suggesting that the TPACK-CCCs training intervention can effectively prepare pre-service teachers to incorporate digital technology in ways that enrich inquiry-based chemistry education and foster CCCs. The implications for teacher education programs and future research directions are discussed in a positive light.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 2","pages":" 398-419"},"PeriodicalIF":2.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The relationship between chemistry achievement emotions and chemistry achievement: a moderated mediation model","authors":"Yurong Liu, Haoran Sun, Zhichao Jia and Wujun Sun","doi":"10.1039/D4RP00300D","DOIUrl":"https://doi.org/10.1039/D4RP00300D","url":null,"abstract":"<p >Chemistry, an introductory course of STEM courses and a critical subject in China's curriculum standards, plays a pivotal role in students' lifelong learning and development. This study explored the relationship between chemistry achievement emotions and chemistry achievement, examining the roles of chemistry self-efficacy and gender within that. The present research used the chemistry achievement emotions scale and the chemistry self-efficacy scale to assess the corresponding characteristics of 512 chemistry elective students from three senior high schools. The results showed that: (1) positive and negative emotions had significant direct effects on chemistry achievement. (2) Positive (negative) emotions positively (negatively) influenced chemistry achievement through the mediation of chemistry self-efficacy. (3) In the moderated mediation model with positive emotions as the independent variable, gender influenced the first half of the mediation pathway; however, the moderating effect of gender was not significant in the moderated mediation model with negative emotions as the independent variable. This study investigated the mechanisms by which chemistry achievement emotions affect achievement, explored the roles of self-efficacy and gender, and provided a more comprehensive insight into how emotional and psychological factors influence academic performance. This research holds important implications for designing specific interventions to improve students' emotional well-being and performance in chemistry.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 2","pages":" 459-475"},"PeriodicalIF":2.6,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin H. Hunter, Lauren A. Groenenboom, Ayesha Farheen and Nicole M. Becker
{"title":"Student conceptualizations and predictions of substitution and elimination reactions: what are they seeing on the page?†","authors":"Kevin H. Hunter, Lauren A. Groenenboom, Ayesha Farheen and Nicole M. Becker","doi":"10.1039/D4RP00204K","DOIUrl":"10.1039/D4RP00204K","url":null,"abstract":"<p >The current study aims to contribute to the literature on how organic chemistry students weigh various factors when predicting products of substitution and elimination reactions. This study focuses specifically on these mechanism types, as they are often the first instances where students must consider the “how” and the “why” of how reactions occur. Previous literature highlights that such reasoning can be challenging. To better support our students, it is essential to understand how they conceptualize these mechanisms. Here, we present results from an investigation into how students compare bimolecular and unimolecular substitution and elimination reactions (S<small><sub>N</sub></small>1, S<small><sub>N</sub></small>2, E1, E2). Students completed tasks involving case comparisons and “predict-the-product” exercises. Through the analysis of nine semi-structured interviews using coordination class theory, we found that (1) students placed a greater emphasis on the importance of the starting substrate in the outcome of a reaction, and (2) focused less on the function of the nucleophile or base in each reaction. Using coordination class theory, we identified visual features and knowledge elements that students coordinated, allowing us to create “resource graphs” that represented students’ conceptualizations. These graphs helped visualize the trajectories of students’ predictions by illustrating how they balanced multiple factors. We discuss implications for supporting students in distinguishing among reaction mechanisms.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 1","pages":" 334-350"},"PeriodicalIF":2.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Langanani Rakhunwana, Angelique Kritzinger and Lynne A. Pilcher
{"title":"Self-regulated learning strategies for success in an online first-year chemistry course","authors":"Langanani Rakhunwana, Angelique Kritzinger and Lynne A. Pilcher","doi":"10.1039/D4RP00159A","DOIUrl":"10.1039/D4RP00159A","url":null,"abstract":"<p >During their first year of study at university, many students encounter challenges in developing learning strategies that align with success in the courses in which they are enrolled. The emergence of the COVID-19 pandemic heightened the challenges as universities were compelled to transition to online learning. Therefore, this study investigated the self-reported use of learning strategies in a first-year chemistry course delivered online due to the COVID-19 pandemic to identify learning strategies associated with success. Grounded in self-regulated learning (SRL) theory, a case study approach with an explanatory mixed methods design was adopted. Quantitative data were collected using a hybrid of the Motivated Strategies for Learning Questionnaire and the Online Self-regulated Learning Questionnaire. Follow-up open-ended questions were emailed to the students for the qualitative part of the study. Statistical analysis of the quantitative data was performed using SPSS and RUMM2030, while thematic analysis was applied to the qualitative data. Students reported more frequent use of SRL strategies of environment structuring, effort regulation, and elaboration. Conversely, critical thinking, task strategies, help-seeking, and peer learning were reportedly used less often. SRL strategies linked with success in the course were identified as effort regulation, goal setting, and time management. The findings from the qualitative data revealed an impact of online learning due to the pandemic on the use of peer learning and help-seeking strategies. The paper discusses the implications of these findings for educational practices, particularly in the context of hybrid learning in the post-pandemic era.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 1","pages":" 300-314"},"PeriodicalIF":2.6,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Student's study behaviors as a predictor of performance in general chemistry I","authors":"Lorraine Laguerre Van Sickle and Regina F. Frey","doi":"10.1039/D3RP00207A","DOIUrl":"10.1039/D3RP00207A","url":null,"abstract":"<p >General chemistry is often the first course taken by students interested in careers in STEM and health fields, and therefore, is considered an essential course for the success and retention of students in these fields. Prior studies have shown study habits and skills to be related to student performance in college-level courses, including STEM courses. Previous chemistry studies have focused on deep <em>versus</em> surface approaches to studying, how affective variables (<em>e.g.</em>, self-efficacy) affect study habits, and how students study week to week. Literature has also shown that students’ management of their general study time can impact their performance, with distraction while studying becoming an increasing challenge for students. This study examined first-semester general-chemistry students' study behaviors (both their explicit learning strategies and study-time management practices) focusing on their exam preparation and that relationship to exam performance when controlling for prior knowledge and class attendance. Key findings include: (1) students, on average, employed two active strategies for exam preparation, dedicated half of their study time to active strategies, and were distracted 26% of the time. (2) While active strategies positively influenced exam performance and passive strategies had a negative impact, not all active strategies were equally effective. (3) The percentage of study time spent on active strategies correlated positively with performance, whereas higher distraction levels during exam preparation negatively affected outcomes. Understanding student exam-study behaviors and their effects on exam performance can help instructors support students more effectively by teaching them study strategies effective for their courses.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 1","pages":" 88-111"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lauren Baade, Effie Kartsonaki, Hassan Khosravi and Gwendolyn A. Lawrie
{"title":"‘Seeing’ chemistry: investigating the contribution of mental imagery strength on students’ thinking in relation to visuospatial problem solving in chemistry†","authors":"Lauren Baade, Effie Kartsonaki, Hassan Khosravi and Gwendolyn A. Lawrie","doi":"10.1039/D4RP00234B","DOIUrl":"10.1039/D4RP00234B","url":null,"abstract":"<p >Effective learning in chemistry education requires students to understand visual representations across multiple conceptual levels. Essential to this process are visuospatial skills which enable students to interpret and manipulate these representations effectively. These abilities allow students to construct mental models that support problem solving and decision making, improving their understanding of complex concepts, for example chemical structures and reactions. The impact of individual differences in mental imagery, such as aphantasia and hyperphantasia, on chemistry students’ spatial thinking when engaging with visual representations is not well understood. This paper presents two exploratory studies that examine how the vividness of mental imagery is related to student outcomes in chemistry-related visuospatial problem solving. The first study quantitatively assessed the performance of first-year university students in tasks requiring complex visual and spatial reasoning within a chemistry context. The second study, involving the same participants, used qualitative interview data to investigate their cognitive strategies with a focus on how their mental imagery impacts their problem-solving approaches. Preliminary results suggest that the vividness of students’ visual mental imagery did not significantly impact their ability to spatially reason with visual representations in chemistry. Our findings also indicate that students with aphantasia may employ alternative strategies that mitigate their lack of visual mental imagery. This paper highlights the need for further research into the diversity of cognitive mechanisms employed by chemistry students of varying mental imagery capabilities.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 1","pages":" 65-87"},"PeriodicalIF":2.6,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical bonding in Swedish upper secondary school education: a force-based teaching model for enhanced understanding","authors":"Catalin Koro Arvidsson","doi":"10.1039/D4RP00258J","DOIUrl":"10.1039/D4RP00258J","url":null,"abstract":"<p >This study investigates if a force-based teaching approach, based on quantum mechanical principles and developed in a lesson study, would enhance the understanding of chemical bonding among upper secondary school students. The teaching approach was based on research on the teaching and learning of chemical bonding. The study included first-year students in upper secondary school in a pretest–intervention–posttest design. During four lessons the students were introduced to the underlying forces leading to the formation of all chemical bonds, specifically focusing on ionic- and covalent bonds. The first lesson, which included a presentation of coulombic interaction as a common basis of bond formation, was developed and improved through a lesson study. The lesson was revised based on feedback from 75 students describing why chemical bondings occur. After the four-lesson series about chemical bonding, a total of 67 of the 75 enrolled students had completed both a pre- and a posttest. The students’ answers to the tests were analyzed based on Bernstein's theory of vertical hierarchical and vertical horizontal discourse. The results of the posttests show that 60% of the students demonstrated solely or predominantly vertical hierarchical knowledge structure. These results indicate that most of the students could understand the force-based approach of chemical bonding by using a general theory, spanning over a wide range of the natural science field, with an abstract and specialized language. Moreover, the students who internalized a hierarchichal knowledge discourse about chemical bonding earned higher final grades in the upper secondary school chemistry when compared to students using a horizontal knowledge discourse, indicating that a force-based approach might facilitate a deeper understanding of other subareas within chemistry. In chemistry education research, the effect of using a force-based approach to teach chemical bonding has not previously been widely tested among upper secondary school students. This study responds to the need to test alternative teaching models to facilitate students’ understanding of chemical bonding.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 1","pages":" 315-333"},"PeriodicalIF":2.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}