ACM Transactions on Design Automation of Electronic Systems (TODAES)最新文献

筛选
英文 中文
FPGAPRO: A Defense Framework Against Crosstalk-Induced Secret Leakage in FPGA FPGAPRO: FPGA串扰致秘密泄漏防御框架
Yukui Luo, Shijin Duan, Xiaolin Xu
{"title":"FPGAPRO: A Defense Framework Against Crosstalk-Induced Secret Leakage in FPGA","authors":"Yukui Luo, Shijin Duan, Xiaolin Xu","doi":"10.1145/3491214","DOIUrl":"https://doi.org/10.1145/3491214","url":null,"abstract":"With the emerging cloud-computing development, FPGAs are being integrated with cloud servers for higher performance. Recently, it has been explored to enable multiple users to share the hardware resources of a remote FPGA, i.e., to execute their own applications simultaneously. Although being a promising technique, multi-tenant FPGA unfortunately brings its unique security concerns. It has been demonstrated that the capacitive crosstalk between FPGA long-wires can be a side-channel to extract secret information, giving adversaries the opportunity to implement crosstalk-based side-channel attacks. Moreover, recent work reveals that medium-wires and multiplexers in configurable logic block (CLB) are also vulnerable to crosstalk-based information leakage. In this work, we propose FPGAPRO: a defense framework leveraging Placement, Routing, and Obfuscation to mitigate the secret leakage on FPGA components, including long-wires, medium-wires, and logic elements in CLB. As a user-friendly defense strategy, FPGAPRO focuses on protecting the security-sensitive instances meanwhile considering critical path delay for performance maintenance. As the proof-of-concept, the experimental result demonstrates that FPGAPRO can effectively reduce the crosstalk-caused side-channel leakage by 138 times. Besides, the performance analysis shows that this strategy prevents the maximum frequency from timing violation.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"56 1","pages":"1 - 31"},"PeriodicalIF":0.0,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90592366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Uncertainty Theory Based Partitioning for Cyber-Physical Systems with Uncertain Reliability Analysis 基于不确定性理论的信息物理系统不确定可靠性划分
Si Chen, Guoqi Xie, Renfa Li, Keqin Li
{"title":"Uncertainty Theory Based Partitioning for Cyber-Physical Systems with Uncertain Reliability Analysis","authors":"Si Chen, Guoqi Xie, Renfa Li, Keqin Li","doi":"10.1145/3490177","DOIUrl":"https://doi.org/10.1145/3490177","url":null,"abstract":"Reasonable partitioning is a critical issue for cyber-physical system (CPS) design. Traditional CPS partitioning methods run in a determined context and depend on the parameter pre-estimations, but they ignore the uncertainty of parameters and hardly consider reliability. The state-of-the-art work proposed an uncertainty theory based CPS partitioning method, which includes parameter uncertainty and reliability analysis, but it only considers linear uncertainty distributions for variables and ignores the uncertainty of reliability. In this paper, we propose an uncertainty theory based CPS partitioning method with uncertain reliability analysis. We convert the uncertain objective and constraint into determined forms; such conversion methods can be applied to all forms of uncertain variables, not just for linear. By applying uncertain reliability analysis in the uncertainty model, we for the first time include the uncertainty of reliability into the CPS partitioning, where the reliability enhancement algorithm is proposed. We study the performance of the reliability obtained through uncertain reliability analysis, and experimental results show that the system reliability with uncertainty does not change significantly with the growth of task module numbers.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"134 1","pages":"1 - 19"},"PeriodicalIF":0.0,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82976817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Implementation, Characterization and Application of Path Changing Switch based Arbiter PUF on FPGA as a lightweight Security Primitive for IoT 基于路径转换开关的仲裁PUF在FPGA上的实现、表征及应用
Mahabub Hasan Mahalat, Suraj Mandal, Anindan Mondal, B. Sen, R. Chakraborty
{"title":"Implementation, Characterization and Application of Path Changing Switch based Arbiter PUF on FPGA as a lightweight Security Primitive for IoT","authors":"Mahabub Hasan Mahalat, Suraj Mandal, Anindan Mondal, B. Sen, R. Chakraborty","doi":"10.1145/3491212","DOIUrl":"https://doi.org/10.1145/3491212","url":null,"abstract":"Secure authentication of any Internet-of-Things (IoT) device becomes the utmost necessity due to the lack of specifically designed IoT standards and intrinsic vulnerabilities with limited resources and heterogeneous technologies. Despite the suitability of arbiter physically unclonable function (APUF) among other PUF variants for the IoT applications, implementing it on field-programmable gate arrays (FPGAs) is challenging. This work presents the complete characterization of the path changing switch (PCS)1 based APUF on two different families of FPGA, like Spartan-3E (90 nm CMOS) and Artix-7 (28 nm CMOS). A comprehensive study of the existing tuning concept for programmable delay logic (PDL) based APUF implemented on FPGA is presented, leading to establishment of its practical infeasibility. We investigate the entropy, randomness properties of the PCS based APUF suitable for practical applications, and the effect of temperature variation signifying the adequate tolerance against environmental variation. The XOR composition of PCS based APUF is introduced to boost performance and security. The robustness of the PCS based APUF against machine learning based modeling attack is evaluated, showing similar characteristics as the conventional APUF. Experimental results validate the efficacy of PCS based APUF with a little hardware footprint removing the paucity of lightweight security primitive for IoT.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"25 1","pages":"1 - 26"},"PeriodicalIF":0.0,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85061286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Towards Fine-Grained Online Adaptive Approximation Control for Dense SLAM on Embedded GPUs 嵌入式gpu上密集SLAM的细粒度在线自适应逼近控制
Tiancong Bu, Kaige Yan, Jingweijia Tan
{"title":"Towards Fine-Grained Online Adaptive Approximation Control for Dense SLAM on Embedded GPUs","authors":"Tiancong Bu, Kaige Yan, Jingweijia Tan","doi":"10.1145/3486612","DOIUrl":"https://doi.org/10.1145/3486612","url":null,"abstract":"Dense SLAM is an important application on an embedded environment. However, embedded platforms usually fail to provide enough computation resources for high-accuracy real-time dense SLAM, even with high-parallelism architecture such as GPUs. To tackle this problem, one solution is to design proper approximation techniques for dense SLAM on embedded GPUs. In this work, we propose two novel approximation techniques, critical data identification and redundant branch elimination. We also analyze the error characteristics of the other two techniques—loop skipping and thread approximation. Then, we propose SLaPP, an online adaptive approximation controller, which aims to control the error to be under an acceptable threshold. The evaluation shows SLaPP can achieve 2.0× performance speedup and 30% energy saving on average compared to the case without approximation.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"106 1","pages":"1 - 19"},"PeriodicalIF":0.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77883843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Automatic High-Level Synthesis Resource Sharing to Maximize Dynamical Voltage Overscaling with Error Control 利用自动高级综合资源共享最大化动态电压过标与误差控制
Prattay Chowdhury, B. C. Schafer
{"title":"Leveraging Automatic High-Level Synthesis Resource Sharing to Maximize Dynamical Voltage Overscaling with Error Control","authors":"Prattay Chowdhury, B. C. Schafer","doi":"10.1145/3473909","DOIUrl":"https://doi.org/10.1145/3473909","url":null,"abstract":"Approximate Computing has emerged as an alternative way to further reduce the power consumption of integrated circuits (ICs) by trading off errors at the output with simpler, more efficient logic. So far the main approaches in approximate computing have been to simplify the hardware circuit by pruning the circuit until the maximum error threshold is met. One of the critical issues, though, is the training data used to prune the circuit. The output error can significantly exceed the maximum error if the final workload does not match the training data. Thus, most previous work typically assumes that training data matches with the workload data distribution. In this work, we present a method that dynamically overscales the supply voltage based on different workload distribution at runtime. This allows to adaptively select the supply voltage that leads to the largest power savings while ensuring that the error will never exceed the maximum error threshold. This approach also allows restoring of the original error-free circuit if no matching workload distribution is found. The proposed method also leverages the ability of High-Level Synthesis (HLS) to automatically generate circuits with different properties by setting different synthesis constraints to maximize the available timing slack and, hence, maximize the power savings. Experimental results show that our proposed method works very well, saving on average 47.08% of power as compared to the exact output circuit and 20.25% more than a traditional approximation method.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"3 1","pages":"1 - 18"},"PeriodicalIF":0.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82297261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An Adaptive Application Framework with Customizable Quality Metrics 具有可定制质量度量的自适应应用程序框架
Liu Liu, Sibren Isaacman, U. Kremer
{"title":"An Adaptive Application Framework with Customizable Quality Metrics","authors":"Liu Liu, Sibren Isaacman, U. Kremer","doi":"10.1145/3477428","DOIUrl":"https://doi.org/10.1145/3477428","url":null,"abstract":"Many embedded environments require applications to produce outcomes under different, potentially changing, resource constraints. Relaxing application semantics through approximations enables trading off resource usage for outcome quality. Although quality is a highly subjective notion, previous work assumes given, fixed low-level quality metrics that often lack a strong correlation to a user’s higher-level quality experience. Users may also change their minds with respect to their quality expectations depending on the resource budgets they are willing to dedicate to an execution. This motivates the need for an adaptive application framework where users provide execution budgets and a customized quality notion. This article presents a novel adaptive program graph representation that enables user-level, customizable quality based on basic quality aspects defined by application developers. Developers also define application configuration spaces, with possible customization to eliminate undesirable configurations. At runtime, the graph enables the dynamic selection of the configuration with maximal customized quality within the user-provided resource budget. An adaptive application framework based on our novel graph representation has been implemented on Android and Linux platforms and evaluated on eight benchmark programs, four with fully customizable quality. Using custom quality instead of the default quality, users may improve their subjective quality experience value by up to 3.59×, with 1.76× on average under different resource constraints. Developers are able to exploit their application structure knowledge to define configuration spaces that are on average 68.7% smaller as compared to existing, structure-oblivious approaches. The overhead of dynamic reconfiguration averages less than 1.84% of the overall application execution time.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"50 1","pages":"1 - 33"},"PeriodicalIF":0.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90873948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Compact High-Dimensional Yield Analysis Method using Low-Rank Tensor Approximation 基于低秩张量近似的紧凑高维屈服分析方法
Xiao Shi, Hao Yan, Qiancun Huang, Chengzhen Xuan, Lei He, Longxing Shi
{"title":"A Compact High-Dimensional Yield Analysis Method using Low-Rank Tensor Approximation","authors":"Xiao Shi, Hao Yan, Qiancun Huang, Chengzhen Xuan, Lei He, Longxing Shi","doi":"10.1145/3483941","DOIUrl":"https://doi.org/10.1145/3483941","url":null,"abstract":"“Curse of dimensionality” has become the major challenge for existing high-sigma yield analysis methods. In this article, we develop a meta-model using Low-Rank Tensor Approximation (LRTA) to substitute expensive SPICE simulation. The polynomial degree of our LRTA model grows linearly with the circuit dimension. This makes it especially promising for high-dimensional circuit problems. Our LRTA meta-model is solved efficiently with a robust greedy algorithm and calibrated iteratively with a bootstrap-assisted adaptive sampling method. We also develop a novel global sensitivity analysis approach to generate a reduced LRTA meta-model which is more compact. It further accelerates the procedure of model calibration and yield estimation. Experiments on memory and analog circuits validate that the proposed LRTA method outperforms other state-of-the-art approaches in terms of accuracy and efficiency.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"208 1","pages":"1 - 23"},"PeriodicalIF":0.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79005584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
MeF-RAM: A New Non-Volatile Cache Memory Based on Magneto-Electric FET MeF-RAM:一种新型的基于磁电场效应晶体管的非易失性缓存存储器
Shaahin Angizi, N. Khoshavi, A. Marshall, P. Dowben, Deliang Fan
{"title":"MeF-RAM: A New Non-Volatile Cache Memory Based on Magneto-Electric FET","authors":"Shaahin Angizi, N. Khoshavi, A. Marshall, P. Dowben, Deliang Fan","doi":"10.1145/3484222","DOIUrl":"https://doi.org/10.1145/3484222","url":null,"abstract":"Magneto-Electric FET (MEFET) is a recently developed post-CMOS FET, which offers intriguing characteristics for high-speed and low-power design in both logic and memory applications. In this article, we present MeF-RAM, a non-volatile cache memory design based on 2-Transistor-1-MEFET (2T1M) memory bit-cell with separate read and write paths. We show that with proper co-design across MEFET device, memory cell circuit, and array architecture, MeF-RAM is a promising candidate for fast non-volatile memory (NVM). To evaluate its cache performance in the memory system, we, for the first time, build a device-to-architecture cross-layer evaluation framework to quantitatively analyze and benchmark the MeF-RAM design with other memory technologies, including both volatile memory (i.e., SRAM, eDRAM) and other popular non-volatile emerging memory (i.e., ReRAM, STT-MRAM, and SOT-MRAM). The experiment results for the PARSEC benchmark suite indicate that, as an L2 cache memory, MeF-RAM reduces Energy Area Latency (EAT) product on average by ~98% and ~70% compared with typical 6T-SRAM and 2T1R SOT-MRAM counterparts, respectively.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"55 1","pages":"1 - 18"},"PeriodicalIF":0.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75953701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Plasticine: A Cross-layer Approximation Methodology for Multi-kernel Applications through Minimally Biased, High-throughput, and Energy-efficient SIMD Soft Multiplier-divider 橡皮泥:通过最小偏置、高通量和高能效SIMD软乘法器实现多核应用的跨层近似方法
Zahra Ebrahimi, D. Klar, Mohammad Aasim Ekhtiyar, Akash Kumar
{"title":"Plasticine: A Cross-layer Approximation Methodology for Multi-kernel Applications through Minimally Biased, High-throughput, and Energy-efficient SIMD Soft Multiplier-divider","authors":"Zahra Ebrahimi, D. Klar, Mohammad Aasim Ekhtiyar, Akash Kumar","doi":"10.1145/3486616","DOIUrl":"https://doi.org/10.1145/3486616","url":null,"abstract":"The rapid evolution of error-resilient programs intertwined with their quest for high throughput has motivated the use of Single Instruction, Multiple Data (SIMD) components in Field-Programmable Gate Arrays (FPGAs). Particularly, to exploit the error-resiliency of such applications, Cross-layer approximation paradigm has recently gained traction, the ultimate goal of which is to efficiently exploit approximation potentials across layers of abstraction. From circuit- to application-level, valuable studies have proposed various approximation techniques, albeit linked to four drawbacks: First, most of approximate multipliers and dividers operate only in SISD mode. Second, imprecise units are often substituted, merely in a single kernel of a multi-kernel application, with an end-to-end analysis in Quality of Results (QoR) and not in the gained performance. Third, state-of-the-art (SoA) strategies neglect the fact that each kernel contributes differently to the end-to-end QoR and performance metrics. Therefore, they lack in adopting a generic methodology for adjusting the approximation knobs to maximize performance gains for a user-defined quality constraint. Finally, multi-level techniques lack in being efficiently supported, from application-, to architecture-, to circuit-level, in a cohesive cross-layer hierarchy. In this article, we propose Plasticine, a cross-layer methodology for multi-kernel applications, which addresses the aforementioned challenges by efficiently utilizing the synergistic effects of a chain of techniques across layers of abstraction. To this end, we propose an application sensitivity analysis and a heuristic that tailor the precision at constituent kernels of the application by finding the most tolerable degree of approximations for each of consecutive kernels, while also satisfying the ultimate user-defined QoR. The chain of approximations is also effectively enabled in a cross-layer hierarchy, from application- to architecture- to circuit-level, through the plasticity of SIMD multiplier-dividers, each supporting dynamic precision variability along with hybrid functionality. The end-to-end evaluations of Plasticine on three multi-kernel applications employed in bio-signal processing, image processing, and moving object tracking for Unmanned Air Vehicles (UAV) demonstrate 41%–64%, 39%–62%, and 70%–86% improvements in area, latency, and Area-Delay-Product (ADP), respectively, over 32-bit fixed precision, with negligible loss in QoR. To springboard future research in reconfigurable and approximate computing communities, our implementations will be available and open-sourced at https://cfaed.tu-dresden.de/pd-downloads.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"4 1","pages":"1 - 33"},"PeriodicalIF":0.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76886506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Distance-aware Approximate Nanophotonic Interconnect 距离感知近似纳米光子互连
Jaechul Lee, C. Killian, S. L. Beux, D. Chillet
{"title":"Distance-aware Approximate Nanophotonic Interconnect","authors":"Jaechul Lee, C. Killian, S. L. Beux, D. Chillet","doi":"10.1145/3484309","DOIUrl":"https://doi.org/10.1145/3484309","url":null,"abstract":"The energy consumption of manycore architectures is dominated by data movement, which calls for energy-efficient and high-bandwidth interconnects. To overcome the bandwidth limitation of electrical interconnects, integrated optics appear as a promising technology. However, it suffers from high power overhead related to low laser efficiency, which calls for the use of techniques and methods to improve its energy costs. Besides, approximate computing is emerging as an efficient method to reduce energy consumption and improve execution speed of embedded computing systems. It relies on allowing accuracy reduction on data at the cost of tolerable application output error. In this context, the work presented in this article exploits both features by defining approximate communications for error-tolerant applications. We propose a method to design realistic and scalable nanophotonic interconnect supporting approximate data transmission and power adaption according to the communication distance to improve the energy efficiency. For this purpose, the data can be sent by mixing low optical power signal and truncation for the Least Significant Bits (LSB) of the floating-point numbers, while the overall power is adapted according to the communication distance. We define two ranges of communications, short and long, which require only four power levels. This reduces area and power overhead to control the laser output power. A transmission model allows estimating the laser power according to the targeted BER and the number of truncated bits, while the optical network interface allows configuring, at runtime, the number of approximated and truncated bits and the laser output powers. We explore the energy efficiency provided by each communication scheme, and we investigate the error resilience of the benchmarks over several approximation and truncation schemes. The simulation results of ApproxBench applications show that, compared to an interconnect involving only robust communications, approximations in the optical transmission led to up to 53% laser power reduction with a limited degradation at the application level with less than 9% of output error. Finally, we show that our solution is scalable and leads to 10% reduction in the total energy consumption, 35× reduction in the laser driver size, and 10× reduction in the laser controller compared to state-of-the-art solution.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"26 1","pages":"1 - 30"},"PeriodicalIF":0.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80640834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信