嵌入式gpu上密集SLAM的细粒度在线自适应逼近控制

Tiancong Bu, Kaige Yan, Jingweijia Tan
{"title":"嵌入式gpu上密集SLAM的细粒度在线自适应逼近控制","authors":"Tiancong Bu, Kaige Yan, Jingweijia Tan","doi":"10.1145/3486612","DOIUrl":null,"url":null,"abstract":"Dense SLAM is an important application on an embedded environment. However, embedded platforms usually fail to provide enough computation resources for high-accuracy real-time dense SLAM, even with high-parallelism architecture such as GPUs. To tackle this problem, one solution is to design proper approximation techniques for dense SLAM on embedded GPUs. In this work, we propose two novel approximation techniques, critical data identification and redundant branch elimination. We also analyze the error characteristics of the other two techniques—loop skipping and thread approximation. Then, we propose SLaPP, an online adaptive approximation controller, which aims to control the error to be under an acceptable threshold. The evaluation shows SLaPP can achieve 2.0× performance speedup and 30% energy saving on average compared to the case without approximation.","PeriodicalId":6933,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","volume":"106 1","pages":"1 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Fine-Grained Online Adaptive Approximation Control for Dense SLAM on Embedded GPUs\",\"authors\":\"Tiancong Bu, Kaige Yan, Jingweijia Tan\",\"doi\":\"10.1145/3486612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense SLAM is an important application on an embedded environment. However, embedded platforms usually fail to provide enough computation resources for high-accuracy real-time dense SLAM, even with high-parallelism architecture such as GPUs. To tackle this problem, one solution is to design proper approximation techniques for dense SLAM on embedded GPUs. In this work, we propose two novel approximation techniques, critical data identification and redundant branch elimination. We also analyze the error characteristics of the other two techniques—loop skipping and thread approximation. Then, we propose SLaPP, an online adaptive approximation controller, which aims to control the error to be under an acceptable threshold. The evaluation shows SLaPP can achieve 2.0× performance speedup and 30% energy saving on average compared to the case without approximation.\",\"PeriodicalId\":6933,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"volume\":\"106 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems (TODAES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3486612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems (TODAES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密集SLAM是嵌入式环境下的一个重要应用。然而,嵌入式平台通常无法为高精度实时密集SLAM提供足够的计算资源,即使采用gpu等高并行架构。为了解决这个问题,一个解决方案是在嵌入式gpu上设计合适的密集SLAM近似技术。在这项工作中,我们提出了两种新的近似技术,关键数据识别和冗余分支消除。本文还分析了另外两种方法的误差特性——跳环和线程逼近。然后,我们提出了一种在线自适应逼近控制器SLaPP,旨在将误差控制在可接受的阈值以下。评估结果表明,与不进行近似的情况相比,SLaPP平均可以实现2.0倍的性能加速和30%的节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Fine-Grained Online Adaptive Approximation Control for Dense SLAM on Embedded GPUs
Dense SLAM is an important application on an embedded environment. However, embedded platforms usually fail to provide enough computation resources for high-accuracy real-time dense SLAM, even with high-parallelism architecture such as GPUs. To tackle this problem, one solution is to design proper approximation techniques for dense SLAM on embedded GPUs. In this work, we propose two novel approximation techniques, critical data identification and redundant branch elimination. We also analyze the error characteristics of the other two techniques—loop skipping and thread approximation. Then, we propose SLaPP, an online adaptive approximation controller, which aims to control the error to be under an acceptable threshold. The evaluation shows SLaPP can achieve 2.0× performance speedup and 30% energy saving on average compared to the case without approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信