Sotaro Takiguchi, Nanami Takeuchi, Vasily Shenshin, Guillaume Gines, Anthony J. Genot, Jeff Nivala, Yannick Rondelez, Ryuji Kawano
{"title":"Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics","authors":"Sotaro Takiguchi, Nanami Takeuchi, Vasily Shenshin, Guillaume Gines, Anthony J. Genot, Jeff Nivala, Yannick Rondelez, Ryuji Kawano","doi":"10.1039/d3cs00396e","DOIUrl":"https://doi.org/10.1039/d3cs00396e","url":null,"abstract":"DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"238 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multidimensionally ordered mesoporous intermetallics: Frontier nanoarchitectonics for advanced catalysis†","authors":"Hao Lv and Ben Liu","doi":"10.1039/D4CS00484A","DOIUrl":"10.1039/D4CS00484A","url":null,"abstract":"<p >Ordered intermetallics contribute to a unique class of catalyst materials due to their rich atomic features. Further engineering of ordered intermetallics at a mesoscopic scale is of great importance to expose more active sites and introduce new functions. Recently, multidimensionally ordered mesoporous intermetallic (MOMI) nanoarchitectonics, which subtly integrate atomically ordered intermetallics and mesoscopically ordered mesoporous structures, have held add-in synergies that not only enhance catalytic activity and stability but also optimize catalytic selectivity. In this tutorial review, we have summarized the latest progress in the rational design, targeted synthesis, and catalytic applications of MOMIs, with a special focus on the findings of our group. Three strategies, including concurrent template route, self-template route, and dealloying route, are discussed in detail. Furthermore, physicochemical properties and catalytic performances for several important reactions are also described to highlight the remarkable activity, high stability, and controllable selectivity of MOMI nanoarchitectonics. Finally, we conclude with a summary and explore future perspectives in the field to contribute to wider applications.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 23","pages":" 11321-11333"},"PeriodicalIF":40.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengwei Li, Shaohua Luo, Yicheng Lin, Jiefeng Xiao, Xiaoning Xia, Xin Liu, Li Wang and Xiangming He
{"title":"Fundamentals of the recycling of spent lithium-ion batteries","authors":"Pengwei Li, Shaohua Luo, Yicheng Lin, Jiefeng Xiao, Xiaoning Xia, Xin Liu, Li Wang and Xiangming He","doi":"10.1039/D4CS00362D","DOIUrl":"10.1039/D4CS00362D","url":null,"abstract":"<p >This review discusses the critical role of fundamentals of battery recycling in addressing the challenges posed by the increasing number of spent lithium-ion batteries (LIBs) due to the widespread use of electric vehicles and portable electronics, by providing the theoretical basis and technical support for recycling spent LIBs, including battery classification, ultrasonic flaw detection, pretreatment (<em>e.g.</em>, discharging, mechanical crushing, and physical separation), electrolyte recovery, direct regeneration, and theoretical calculations and simulations. Physical chemistry principles are essential for achieving effective separation of different components through methods like screening, magnetic separation, and flotation. Electrolyte recovery involves separation and purification of electrolytes through advanced physical and chemical techniques. Direct regeneration technology restores the structure of electrode materials at the microscopic scale, requiring precise control of the physical state and crystal structure of the material. Physical processes such as phase changes, solubility, and diffusion are fundamental to techniques like solid-state sintering, eutectic-salt treatment, and hydrothermal methods. Theoretical calculations and simulations help predict the behaviour of materials during recycling, guiding process optimization. This review provides insights into understanding and improving the recycling process, emphasizing the central role of physical chemistry principles in addressing environmental and energy issues. It is valuable for promoting innovation in spent LIB recycling processes and is expected to stimulate interest among researchers and manufacturers.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 24","pages":" 11967-12013"},"PeriodicalIF":40.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jamal Abdul Nasir, Andrew M. Beale and C. Richard A. Catlow
{"title":"Understanding deNOx mechanisms in transition metal exchanged zeolites","authors":"Jamal Abdul Nasir, Andrew M. Beale and C. Richard A. Catlow","doi":"10.1039/D3CS00468F","DOIUrl":"10.1039/D3CS00468F","url":null,"abstract":"<p >Transition-metal-containing zeolites have wide-ranging applications in several catalytic processes including the selective catalytic reduction (SCR) of NO<small><sub><em>x</em></sub></small> species. To understand how transition metal ions (TMIs) can effect NO<small><sub><em>x</em></sub></small> reduction chemistry, both structural and mechanistic aspects at the atomic level are needed. In this review, we discuss the coordination chemistry of TMIs and their mobility within the zeolite framework, the reactivity of active sites, and the mechanisms and intermediates in the NH<small><sub>3</sub></small>-SCR reaction. We emphasise the key relationship between TMI coordination and structure and mechanism and discuss approaches to enhancing catalytic activity <em>via</em> structural modifications.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 23","pages":" 11657-11691"},"PeriodicalIF":40.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cs/d3cs00468f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cedric Devos, Ariana Bampouli, Elena Brozzi, Georgios D. Stefanidis, Michiel Dusselier, Tom Van Gerven, Simon Kuhn
{"title":"Ultrasound mechanisms and their effect on solid synthesis and processing: a review","authors":"Cedric Devos, Ariana Bampouli, Elena Brozzi, Georgios D. Stefanidis, Michiel Dusselier, Tom Van Gerven, Simon Kuhn","doi":"10.1039/d4cs00148f","DOIUrl":"https://doi.org/10.1039/d4cs00148f","url":null,"abstract":"Ultrasound proves to be an effective technique for intensifying a wide range of processes involving solids and, as such, is often used to improve control over both solids formation and post-treatment stages. The intensifying capabilities of ultrasonic processing are best interpreted in the context of the chemical, transport, and mechanical effects that occur during sonication. This review presents an overview of how ultrasound influences the processing and synthesis of solids across various material classes, contextualized within an ultrasound effect framework. By describing the mechanisms underlying the different effects of ultrasound on the solid synthesis and processing, this review aims to facilitate a deeper understanding of the current literature in the field and to promote more effective utilization of ultrasound technology in solid synthesis and processing.","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":"8 1","pages":""},"PeriodicalIF":46.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhang Liu, Xiaozhi Su, Jie Ding, Jing Zhou, Zhen Liu, Xiangjun Wei, Hong Bin Yang and Bin Liu
{"title":"Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques","authors":"Yuhang Liu, Xiaozhi Su, Jie Ding, Jing Zhou, Zhen Liu, Xiangjun Wei, Hong Bin Yang and Bin Liu","doi":"10.1039/D3CS00967J","DOIUrl":"10.1039/D3CS00967J","url":null,"abstract":"<p >Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and <em>in situ</em>/<em>operando</em> observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 24","pages":" 11850-11887"},"PeriodicalIF":40.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathijs J. Pals, Alexander Lindberg and Willem A. Velema
{"title":"Chemical strategies for antisense antibiotics","authors":"Mathijs J. Pals, Alexander Lindberg and Willem A. Velema","doi":"10.1039/D4CS00238E","DOIUrl":"10.1039/D4CS00238E","url":null,"abstract":"<p >Antibacterial resistance is a severe threat to modern medicine and human health. To stay ahead of constantly-evolving bacteria we need to expand our arsenal of effective antibiotics. As such, antisense therapy is an attractive approach. The programmability allows to in principle target any RNA sequence within bacteria, enabling tremendous selectivity. In this Tutorial Review we provide guidelines for devising effective antibacterial antisense agents and offer a concise perspective for future research. We will review the chemical architectures of antibacterial antisense agents with a special focus on the delivery and target selection for successful antisense design. This Tutorial Review will strive to serve as an essential guide for antibacterial antisense technology development.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 23","pages":" 11303-11320"},"PeriodicalIF":40.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaodan Jia, Yue Wang, Yue Qiao, Xiue Jiang and Jinghong Li
{"title":"Nanomaterial-based regulation of redox metabolism for enhancing cancer therapy†","authors":"Xiaodan Jia, Yue Wang, Yue Qiao, Xiue Jiang and Jinghong Li","doi":"10.1039/D4CS00404C","DOIUrl":"10.1039/D4CS00404C","url":null,"abstract":"<p >Altered redox metabolism is one of the hallmarks of tumor cells, which not only contributes to tumor proliferation, metastasis, and immune evasion, but also has great relevance to therapeutic resistance. Therefore, regulation of redox metabolism of tumor cells has been proposed as an attractive therapeutic strategy to inhibit tumor growth and reverse therapeutic resistance. In this respect, nanomedicines have exhibited significant therapeutic advantages as intensively reported in recent studies. In this review, we would like to summarize the latest advances in nanomaterial-assisted strategies for redox metabolic regulation therapy, with a focus on the regulation of redox metabolism-related metabolite levels, enzyme activity, and signaling pathways. In the end, future expectations and challenges of such emerging strategies have been discussed, hoping to enlighten and promote their further development for meeting the various demands of advanced cancer therapies. It is highly expected that these therapeutic strategies based on redox metabolism regulation will play a more important role in the field of nanomedicine.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 23","pages":" 11590-11656"},"PeriodicalIF":40.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chamila Gunathilake, Ibrahim Soliman, Dhruba Panthi, Peter Tandler, Omar Fatani, Noman Alias Ghulamullah, Dinesh Marasinghe, Mohamed Farhath, Terrence Madhujith, Kirt Conrad, Yanhai Du and Mietek Jaroniec
{"title":"A comprehensive review on hydrogen production, storage, and applications","authors":"Chamila Gunathilake, Ibrahim Soliman, Dhruba Panthi, Peter Tandler, Omar Fatani, Noman Alias Ghulamullah, Dinesh Marasinghe, Mohamed Farhath, Terrence Madhujith, Kirt Conrad, Yanhai Du and Mietek Jaroniec","doi":"10.1039/D3CS00731F","DOIUrl":"10.1039/D3CS00731F","url":null,"abstract":"<p >The transformation from combustion-based to renewable energy technologies is of paramount importance due to the rapid depletion of fossil fuels and the dramatic increase in atmospheric CO<small><sub>2</sub></small> levels resulting from growing global energy demands. To achieve the Paris Agreement's long-term goal of carbon neutrality by 2050, the full implementation of clean and sustainable energy sources is essential. Consequently, there is an urgent demand for zero or low-carbon fuels with high energy density that can produce electricity and heat, power vehicles, and support global trade. This review presents the global motivation to reduce carbon dioxide by utilizing hydrogen technology, which is key to meeting future energy demands. It discusses the basic properties of hydrogen and its application in both prototype and large-scale efficient technologies. Hydrogen is a clean fuel and a versatile energy carrier; when used in fuel cells or combustion devices, the final product is water vapor. Hydrogen gas production methods are reviewed across renewable and non-renewable sources, with reaction processes categorized as green, blue, grey, black, pink, and turquoise, depending on the reaction pathway and CO<small><sub>2</sub></small> emissions management. This review covers the applications of hydrogen technology in petroleum refining, chemical and metrological production, hydrogen fuel cell electric vehicles (HFCEVs), backup power generation, and its use in transportation, space, and aeronautics. It assesses physical and material-based hydrogen storage methods, evaluating their feasibility, performance, and safety, and comparing HFCEVs with battery and gasoline vehicles from environmental and economic perspectives. Finally, the prospects and challenges associated with hydrogen production, handling, storage, transportation, and safety are also discussed.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 22","pages":" 10900-10969"},"PeriodicalIF":40.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saman Hosseinkhani, Mojdeh Amandadi, Parisa Ghanavatian, Fateme Zarein, Farangis Ataei, Maryam Nikkhah and Peter Vandenabeele
{"title":"Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives","authors":"Saman Hosseinkhani, Mojdeh Amandadi, Parisa Ghanavatian, Fateme Zarein, Farangis Ataei, Maryam Nikkhah and Peter Vandenabeele","doi":"10.1039/D3CS00743J","DOIUrl":"10.1039/D3CS00743J","url":null,"abstract":"<p >Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication <em>in vitro</em> and <em>in vivo</em> for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 23","pages":" 11557-11589"},"PeriodicalIF":40.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}