{"title":"Visualization of Amyloid Oligomers in the Brain of Patients with Alzheimer’s Disease","authors":"Ikuo Tooyama, Tomoko Kato, Hiroyasu Taguchi, Yusuke Kageyama, Kazuhiro Irie, Yukie Hirahara, Daijiro Yanagisawa","doi":"10.1267/ahc.23-00058","DOIUrl":"https://doi.org/10.1267/ahc.23-00058","url":null,"abstract":"</p><p>In the pathogenesis of Alzheimer’s disease (AD), highly neurotoxic amyloid-β (Aβ) oligomers appear early, they are thus considered to be deeply involved in the onset of Alzheimer’s disease. However, Aβ oligomer visualization is challenging in human tissues due to their multiple forms (e.g., low- and high-molecular-weight oligomers, including protofibrils) as well as their tendency to rapidly change forms and aggregate. In this review, we present two visualization approaches for Aβ oligomers in tissues: an immunohistochemical (using the monoclonal antibody TxCo1 against toxic Aβ oligomer conformers) and imaging mass spectrometry using the small chemical Shiga-Y51 that specifically binds Aβ oligomers. TxCo1 immunohistochemistry revealed Aβ oligomer distributions in postmortem human brains with AD. Using Shiga-Y51, imaging mass spectrometry revealed Aβ oligomer distributions in the brain of a transgenic mouse model for AD. These two methods would potentially contribute to elucidating the pathological mechanisms underlying AD.</p>\u0000<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138823941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyclin D3 Colocalizes with Myogenin and p21 in Skeletal Muscle Satellite Cells during Early-Stage Functional Overload","authors":"Minenori Ishido","doi":"10.1267/ahc.23-00041","DOIUrl":"https://doi.org/10.1267/ahc.23-00041","url":null,"abstract":"</p><p>Myogenic cell differentiation is modulated by multiple regulatory factors, such as myogenin, p21, and cyclin D3 during myogenesis <i>in vitro</i>. It is also recognized that myogenin and p21 play important roles in regulating muscle satellite cell (SC) differentiation during overload-induced muscle hypertrophy <i>in vivo</i>. However, the expression patterns and functional role of cyclin D3 in the progress of muscle hypertrophy remain unclear. Thus, the present study investigated cyclin D3 expression in skeletal muscles during early-stage functional overload. Plantaris muscles were exposed to functional overload due to ablation of the gastrocnemius and soleus muscles. As a result, cyclin D3 expression was detected in the nuclei of SCs but not in myonuclei on day 1 after surgery. Cyclin D3 expression, after functional overload, gradually increased, reaching a maximum on day 7 along with myogenin expression. Moreover, in response to the functional overload, cyclin D3 was expressed simultaneously with myogenin and p21 in SC nuclei. Therefore, the present study suggests that cyclin D3 with myogenin and p21 may interactively regulate SC differentiation during early-stage functional overload.</p>\u0000<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138745379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Hirokawa, Chie Inomoto, Kenichi Oyama, Shigeyuki Tahara, Robert Y. Osamura, Takayuki Shiomi, Akira Matsuno
{"title":"Analysis of Insulinoma-Associated Protein 1 Expression in Pituitary Neuroendocrine Tumors","authors":"Yu Hirokawa, Chie Inomoto, Kenichi Oyama, Shigeyuki Tahara, Robert Y. Osamura, Takayuki Shiomi, Akira Matsuno","doi":"10.1267/ahc.23-00033","DOIUrl":"https://doi.org/10.1267/ahc.23-00033","url":null,"abstract":"</p><p>Insulinoma-associated protein 1 (INSM1) is a representative diagnostic marker of neuroendocrine neoplasms (NENs); however, it has not yet been used to diagnose pituitary neuroendocrine tumors (PitNETs), according to the 2022 World Health Organization (WHO) classification of pituitary tumors. This study aimed to examine the expression of INSM1 using immunohistochemistry, in the various cell lineages of PitNET classified by hormone secretion and transcription factor expression. INSM1 expression in PitNETs (different subtypes) and normal pituitary tissues was immunohistochemically assessed. The results were interpreted as scores of 0 (negative), 1 (focally positive), or 2 (frankly positive), depending on the proportion of cell staining. Twenty-eight of 35 PitNET cases (80%) showed INSM1 positivity in their nuclei. The staining in each histological subtype of PitNETs was as follows: somatotroph tumors, score 0 = 3/5, score 1 = 1/5, score 2 = 1/5; lactotroph tumors, score 0 = 2/5, score 1 = 1/5, score 2 = 2/5; thyrotroph tumors, score 2 = 5/5; corticotroph tumors: score 1 = 1/9, score 2 = 8/9; gonadotroph tumors, score 0 = 2/10, score 1 = 0/10, score 2 = 8/10; and unclassifiable tumor, score 1 = 1/1. INSM1 expression in most PitNETs was obtained, similar to that in the normal pituitary gland; thus, INSM1 may maintain the characteristics of anterior pituitary cells and pituitary tumors.</p>\u0000<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138820871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunohistochemical Analyses of Mammalian Target of Rapamycin (mTOR) Expression in Pituitary Neuroendocrine Tumors (PitNETs): mTOR as a Therapeutic Target for Functional PitNETs","authors":"Ichiro Nakazato, Takayuki Shiomi, Kenichi Oyama, Akira Matsuno, Chie Inomoto, R. Yoshiyuki Osamura","doi":"10.1267/ahc.23-00039","DOIUrl":"https://doi.org/10.1267/ahc.23-00039","url":null,"abstract":"</p><p>Current therapeutic modalities for pituitary neuroendocrine tumors (PitNETs) include medication, surgery, and radiotherapy. Some patients have tumors that are refractory to current modalities. Therefore, novel treatment options are needed for patients with intractable diseases. Consequently, we examined the pathological data of PitNETs to study medical therapies. We retrospectively studied 120 patients with histologically diagnosed PitNETs. We used the data for the histopathological examination of hormones, such as growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone, thyroid stimulating hormone, luteinizing hormone, follicle-stimulating hormone, and α-subunit, together with the immunohistochemical studies of the phospho-mammalian target of rapamycin (mTOR), cytokeratin (CAM5.2), somatostatin receptor (SSTR) type 2 and 5, Pit-1 (POU1F1/GHF-1), steroidogenic factor-1 (SF-1), and Tpit. GH-, PRL-, and SSTR5-immunopositive PitNETs had significantly higher percentage of mTOR-positivity, compared with GH-, PRL-, and SSTR5-immunonegative Pit NETs. Our results show that activation of the AKT/phosphatidylinositol-3-kinase pathway, including mTOR activation, might be related the development of PitNETs, especially GH- and PRL-producing PitNETs. Thus, mTOR is a potential target for treating functional PitNETs.</p>\u0000<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138745697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High Concentrations of Nucleotides Prevent Capillary Regression during Hindlimb Unloading by Inhibiting Oxidative Stress and Enhancing Mitochondrial Metabolism of Soleus Muscles in Rats","authors":"Ryosuke Nakanishi, Nagisa Hashimoto, Miho Takuwa, Jihao Xing, Mikiko Uemura, Badur un Nisa, Masayuki Tanaka, Takumi Hirabayashi, Minoru Tanaka, Hidemi Fujino","doi":"10.1267/ahc.23-00029","DOIUrl":"https://doi.org/10.1267/ahc.23-00029","url":null,"abstract":"</p><p>Prolonged inactivity in skeletal muscles decreases muscle capillary development because of an imbalance between pro- and antiangiogenic signals, mitochondrial metabolism disorders, and increased oxidative stress. Nucleotides have been shown to exert a dose-dependent effect on disuse-induced muscle atrophy. However, the dose-dependent effect on capillary regression in disused muscles remains unclear. Therefore, this study investigated the dose-dependent effect of nucleotides on capillary regression due to disuse. For this purpose, Wistar rats were divided into five groups as follows: control rats fed nucleotide-free diets (CON), hindlimb-unloaded rats fed nucleotide-free diets (HU), and hindlimb-unloaded rats fed 1.0%, 2.5%, and 5.0% nucleotide diets, (HU + 1.0% NT), (HU + 2.5% NT), and (HU + 5.0% NT), respectively. Unloading increased reactive oxygen species (ROS) production and decreased mitochondrial enzyme activity, thereby decreasing the number of muscle capillaries. In contrast, 5.0% nucleotide-containing diet prevented increases in ROS production and reductions in the expression levels of NAMPT, PGC-1α, and CPT-1b proteins. Moreover, 5.0% nucleotide-containing diet prevented mitochondrial enzyme activity (such as citrate synthase and beta-hydroxy acyl-CoA dehydrogenase activity) via NAMPT or following PGC-1α upregulation, thereby preventing capillary regression. Therefore, 5.0% nucleotide-containing diet is likely to prevent capillary regression by decreasing oxidative stress and increasing mitochondrial metabolism.</p>\u0000<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138820698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara A Hosny, Alshaymaa M Abdelmenem, Taha Azouz, Samaa S Kamar, Asmaa M ShamsEldeen, Asmaa A El-Shafei
{"title":"Beneficial Effect of Erythropoietin on Ameliorating Propionic Acid-Induced Autistic-Like Features in Young Rats.","authors":"Sara A Hosny, Alshaymaa M Abdelmenem, Taha Azouz, Samaa S Kamar, Asmaa M ShamsEldeen, Asmaa A El-Shafei","doi":"10.1267/ahc.23-00027","DOIUrl":"10.1267/ahc.23-00027","url":null,"abstract":"<p><p>Autism is a neurodevelopmental disorder that impairs communication and social interaction. This study investigated the possible beneficial effects of erythropoietin (EPO) on experimental autistic-like behaviors induced by propionic acid (PPA). Twenty-four rats were distributed into three groups: (i) control; (ii) PPA_Gp: daily injected subcutaneously with PPA for five consecutive days; PPA+EPO-Gp: injected with PPA, then received intraperitoneal injection of EPO once daily for two weeks. Behavioral changes in the rats were assessed. Specimens from the cerebellar hemispheres were subjected to histological and ultrastructure examination, immunohistochemistry for glial fibrillary acidic protein (GFAP) and calbindin-D28K, and biochemical analysis for glutathione peroxidase (GSH-Px), malondialdehyde (MDA), gamma amino-butyric acid (GABA), and serotonin. PPA-Gp showed significant behavioral impairment, with a significant depletion in GSH-px, GABA, and serotonin and a significant increase in MDA. Histological examination revealed reduced Purkinje cell count with ultrastructural degeneration, irregularly arranged nerve fibers in the molecular layer, astrogliosis, and significantly decreased calbindin-immunostaining compared to the control. EPO protected cerebellar structure, increased Purkinje cell count, improved neuronal morphology, reduced PPA-induced autistic-like features, alleviated neuronal oxidative stress, increased intercellular antioxidant levels, and suppressed inflammation. EPO provided significant protection against PPA-induced autistic features in rats, with structural preservation of Purkinje cells.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134648098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunolocalization of Cytoplasmic ER in ER-negative Breast Carcinoma as a Potent Favorable Prognostic Predictor.","authors":"Akiko Ebata, Takashi Suzuki, Narumi Shoji-Harada, Yohei Hamanaka, Minoru Miyashita, Erina Iwabuchi, Kiyoshi Takagi, Yasuhiro Miki, Hiroshi Tada, Takanori Ishida","doi":"10.1267/ahc.23-00016","DOIUrl":"https://doi.org/10.1267/ahc.23-00016","url":null,"abstract":"<p><p>It is known that estrogen receptor (ER) has extranuclear signaling functions in addition to classical genomic pathway, and estrogenic actions have been reported in ER-negative breast carcinoma cells. However, significance of cytoplasmic-ER immunoreactivity has not been reported in ER-negative breast carcinoma tissues. We immunolocalized cytoplasmic ER in 155 ER-negative breast carcinoma tissues and evaluated its clinicopathological significance including the prognosis. As a comparative cohort set, we also used 142 ER-positive breast carcinomas. Cytoplasmic-ER immunoreactivity was detected in the carcinoma cells, but not in the non-neoplastic mammary epithelium. Cytoplasmic-ER immunoreactivity was positive in the 35 out of 155 (23%) ER-negative breast carcinoma cases, whereas it was detected only in 2 out of 142 (1.4%) ER-positive cases. Cytoplasmic ER status was positively associated with cytoplasmic-PR status, but inversely associated with Ki67 labeling index or distant free-relapse survival rate. Moreover, cytoplasmic-ER status turned out to be an independent good prognostic factor for both distant relapse-free survival and breast cancer specific survival. These findings suggested that cytoplasmic ER plays important roles in the ER-negative breast carcinoma, and cytoplasmic ER is a potent good prognostic factor. Among the ER-negative breast cancer patients, clinical benefit of chemotherapy may be limited in the cytoplasmic-ER positive cases.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/07/ahc-056-59.PMC10480483.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10245650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Muscarinic Receptor Stimulation Does Not Inhibit Voltage-dependent Ca<sup>2+</sup> Channels in Rat Adrenal Medullary Chromaffin Cells.","authors":"Keita Harada, Masumi Inoue","doi":"10.1267/ahc.23-00042","DOIUrl":"https://doi.org/10.1267/ahc.23-00042","url":null,"abstract":"<p><p>Adrenal medullary chromaffin (AMC) and sympathetic ganglion cells are derived from the neural crest and show a similar developmental path. Thus, these two cell types have many common properties in membrane excitability and signaling. However, AMC cells function as endocrine cells while sympathetic ganglion cells are neurons. In rat sympathetic ganglion cells, muscarinic M<sub>1</sub> and M<sub>4</sub> receptors mediate excitation and inhibition via suppression of M-type K<sup>+</sup> channels and suppression of voltage-dependent Ca<sup>2+</sup> channels, respectively. On the other hand, M<sub>1</sub> receptor stimulation in rat AMC cells also produces excitation by suppressing TWIK-related acid sensitive K<sup>+</sup> (TASK) channels. However, whether M<sub>4</sub> receptors are coupled with voltage-dependent Ca<sup>2+</sup> channel suppression is unclear. We explore this issue electrophysiologically and biochemically. Electrical stimulation of nerve fibers in rat adrenal glands trans-synaptically increased the Ca<sup>2+</sup> signal in AMC cells. This electrically evoked increased Ca<sup>2+</sup> signal was not altered during muscarine-induced increase in Ca<sup>2+</sup> signal, whereas it decreased significantly during a GABA-induced increase, due to a shunt effect of increased Cl<sup>-</sup> conductance. The whole-cell current recordings revealed that voltage-dependent Ca<sup>2+</sup> currents in AMC cells were suppressed by adenosine triphosphate, but not by muscarinic agonists. The fractionation analysis and immunocytochemistry indicated that Ca<sub>V</sub>1.2 Ca<sup>2+</sup> channels and M<sub>4</sub> receptors are located in the raft and non-raft membrane domains, respectively. We concluded that muscarinic stimulation in rat AMC cells does not produce voltage-dependent Ca<sup>2+</sup> channel inhibition. This lack of muscarinic inhibition is at least partly due to physical separation of voltage-dependent Ca<sup>2+</sup> channels and M<sub>4</sub> receptors in the plasma membrane.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/6b/ahc-056-67.PMC10480484.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10541740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in High-sensitivity <i>In Situ</i> Hybridization and Costs and Benefits to Consider When Employing These Methods.","authors":"Shimpei Higo, Hirotaka Ishii, Hitoshi Ozawa","doi":"10.1267/ahc.23-00024","DOIUrl":"https://doi.org/10.1267/ahc.23-00024","url":null,"abstract":"<p><p><i>In situ</i> hybridization (ISH), which visualizes nucleic acids in tissues and cells, is a powerful tool in histology and pathology. Over 50 years since its invention, multiple attempts have been made to increase the sensitivity and simplicity of these methods. Therefore, several highly sensitive <i>in situ</i> hybridization methods have been developed that offer researchers a wide range of options. When selecting these <i>in situ</i> hybridization variants, their signal-amplification principles and characteristics must be understood. In addition, from a practical point of view, a method with good monetary and time-cost performance must be chosen. This review introduces recent high-sensitivity <i>in situ</i> hybridization variants and presents their principles, characteristics, and costs.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a9/ac/ahc-56-49.PMC10323200.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9813018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Histone Modification in Histochemistry and Cytochemistry.","authors":"Riko Kitazawa, Ryuma Haraguchi, Sohei Kitazawa","doi":"10.1267/ahc.23-00014","DOIUrl":"https://doi.org/10.1267/ahc.23-00014","url":null,"abstract":"<p><p>Keeping chromatin in a stable state is essential for genome stability, scheduled transcription, replication, DNA repair, and precise and reliable chromosome segregation and telomere maintenance during cell division. Over the past decade, research on chromatin remodeling has made great strides whereby modification of histone proteins is a key factor involved in many of the essential cellular processes. The nuclear findings of tumor cells that pathologists routinely examine are nothing but reflections of both genomic and histone alterations. Moreover, impaired histone function is known to be related to common diseases such as diabetes and atherosclerosis, and is, therefore, considered a potential therapeutic target. The present review first outlines the physiological function of histone proteins, and second, demonstrates their alterations to pathological states, emphasizing the importance of immunohistochemistry in histopathological diagnosis.</p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2e/58/ahc-56-41.PMC10323199.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9806708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}