{"title":"Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation","authors":"Timothy M. Adamo, Carlos Kozameh, Ezra T. Newman","doi":"10.12942/lrr-2009-6","DOIUrl":"https://doi.org/10.12942/lrr-2009-6","url":null,"abstract":"<p>A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues.</p><p>This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in an auxiliary four-complex dimensional space, <span>({mathcal H})</span>-space. They in turn play a dominant role in the applications.</p><p>The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell) field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss) by (Bondi’s) integrals of the Weyl tensor, also at infinity.</p><p>More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum-conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"12 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2009-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4475730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasi-Local Energy-Momentum and Angular Momentum in General Relativity","authors":"László B. Szabados","doi":"10.12942/lrr-2009-4","DOIUrl":"https://doi.org/10.12942/lrr-2009-4","url":null,"abstract":"<p>The present status of the quasi-local mass, energy-momentum and angular-momentum constructions in general relativity is reviewed. First, the general ideas, concepts, and strategies, as well as the necessary tools to construct and analyze the quasi-local quantities, are recalled. Then, the various specific constructions and their properties (both successes and deficiencies are discussed. Finally, some of the (actual and potential) applications of the quasi-local concepts and specific constructions are briefly mentioned.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"12 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2009-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2009-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4754419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characteristic Evolution and Matching","authors":"Jeffrey Winicour","doi":"10.12942/lrr-2009-3","DOIUrl":"https://doi.org/10.12942/lrr-2009-3","url":null,"abstract":"<p>I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to eliminate the role of this artificial outer boundary via Cauchy-characteristic matching, by which the radiated waveform can be computed at null infinity. Progress in this direction is discussed.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"12 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2009-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2009-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4634497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectral Methods for Numerical Relativity","authors":"Philippe Grandclément, Jérôme Novak","doi":"10.12942/lrr-2009-1","DOIUrl":"https://doi.org/10.12942/lrr-2009-1","url":null,"abstract":"<p>Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole-binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole-binary mergers.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"12 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2009-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2009-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4382472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physics of Neutron Star Crusts","authors":"Nicolas Chamel, Pawel Haensel","doi":"10.12942/lrr-2008-10","DOIUrl":"https://doi.org/10.12942/lrr-2008-10","url":null,"abstract":"<p>The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"11 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2008-10","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4485887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stochastic Gravity: Theory and Applications","authors":"Bei Lok Hu, Enric Verdaguer","doi":"10.12942/lrr-2008-3","DOIUrl":"https://doi.org/10.12942/lrr-2008-3","url":null,"abstract":"<p>Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semi-classical gravity is based on the Einstein-Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued) stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein-Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out directions for further developments and applications.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"11 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2008-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4375069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum","authors":"Dimitrios Psaltis","doi":"10.12942/lrr-2008-9","DOIUrl":"https://doi.org/10.12942/lrr-2008-9","url":null,"abstract":"<p>Neutron stars and black holes are the astrophysical systems with the strongest gravitational fields in the universe. In this article, I review the prospect of using observations of such compact objects to probe some of the most intriguing general relativistic predictions in the strong-field regime: the absence of stable circular orbits near a compact object and the presence of event horizons around black-hole singularities. I discuss the need for a theoretical framework, within which future experiments will provide detailed, quantitative tests of gravity theories. Finally, I summarize the constraints imposed by current observations of neutron stars on potential deviations from general relativity.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"11 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2008-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4731710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Binary and Millisecond Pulsars","authors":"Duncan R. Lorimer","doi":"10.12942/lrr-2008-8","DOIUrl":"https://doi.org/10.12942/lrr-2008-8","url":null,"abstract":"<p>We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 <i>M</i><sub>⊙</sub>, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (<i>e</i> = 0.44) orbit around an unevolved companion.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"11 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2008-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2008-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4180510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity","authors":"José A. Font","doi":"10.12942/lrr-2008-7","DOIUrl":"https://doi.org/10.12942/lrr-2008-7","url":null,"abstract":"<p>This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has been made to focus on multidimensional studies, directing the interested reader to earlier versions of the review for discussions on one-dimensional works.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"11 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2008-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2008-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4771587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Black Holes in Higher Dimensions","authors":"Roberto Emparan, Harvey S. Reall","doi":"10.12942/lrr-2008-6","DOIUrl":"https://doi.org/10.12942/lrr-2008-6","url":null,"abstract":"<p>We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers-Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"11 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2008-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2008-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4361987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}