{"title":"Brane-World Gravity","authors":"Roy Maartens, Kazuya Koyama","doi":"10.12942/lrr-2010-5","DOIUrl":null,"url":null,"abstract":"<p>The observable universe could be a 1+3-surface (the “brane”) embedded in a 1+3+<i>d</i>-dimensional spacetime (the “bulk”), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the <i>d</i> extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (~ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity “leaks” into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at <i>low</i> energies — the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.</p>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"13 1","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2010-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrr-2010-5","citationCount":"965","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Relativity","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.12942/lrr-2010-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 965
Abstract
The observable universe could be a 1+3-surface (the “brane”) embedded in a 1+3+d-dimensional spacetime (the “bulk”), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (~ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity “leaks” into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies — the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.
期刊介绍:
Living Reviews in Relativity is a peer-reviewed, platinum open-access journal that publishes reviews of research across all areas of relativity. Directed towards the scientific community at or above the graduate-student level, articles are solicited from leading authorities and provide critical assessments of current research. They offer annotated insights into key literature and describe available resources, maintaining an up-to-date suite of high-quality reviews, thus embodying the "living" aspect of the journal's title.
Serving as a valuable tool for the scientific community, Living Reviews in Relativity is often the first stop for researchers seeking information on current work in relativity. Written by experts, the reviews cite, explain, and assess the most relevant resources in a given field, evaluating existing work and suggesting areas for further research.
Attracting readers from the entire relativity community, the journal is useful for graduate students conducting literature surveys, researchers seeking the latest results in unfamiliar fields, and lecturers in need of information and visual materials for presentations at all levels.