Ting Zheng, Paul K. Jo, Sreejith Kochupurackal Rajan, M. Bakir
{"title":"Polylithic Integration for RF/MM-Wave Chiplets using Stitch-Chips: Modeling, Fabrication, and Characterization","authors":"Ting Zheng, Paul K. Jo, Sreejith Kochupurackal Rajan, M. Bakir","doi":"10.1109/IMS30576.2020.9223887","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9223887","url":null,"abstract":"A polylithic integration technology is demonstrated for seamless stitching of RF and digital chiplets. In this technology, stitch-chips with compressible microinterconnects (CMIs) are used for low-loss and dense interconnection between chiplets. A testbed using fused-silica stitch-chips with integrated CMIs is demonstrated including modeling, fabrication, assembly, and characterization. A 500 µm-long stitch-chip signal link is measured to have less than 0.4 dB insertion loss up to 30 GHz. A simulated eye diagram for 1000 µm-long stitch-chip signal link has a clear opening at 50 Gbps data rate. Moreover, the S-parameters of the CMIs are extracted from this testbed and show less than 0.17 dB insertion loss up to 30 GHz. Benchmarking to silicon interposer based interconnection is also reported.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"30 1","pages":"1035-1038"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77932725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Noncontact High-Linear Motion Sensing Based on A Modified Differentiate and Cross-Multiply Algorithm","authors":"W. Xu, Changzhan Gu, J. Mao","doi":"10.1109/IMS30576.2020.9223896","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9223896","url":null,"abstract":"The interferometric radar sensor can wirelessly detect the relative displacement motions, owing to its inherent nature of high sensitivity to the moving objects. To overcome the phase ambiguity and discontinuity caused by non-linear phase modulation, approaches such as differentiate and cross-multiply (DACM) were proposed for linear demodulation of the vibration motions. However, the existing DACM algorithm is strongly dependent on the calibration of I/Q output signals, resulting in low tolerance to noise and inaccuracy in detecting motions of large linear displacement. Based on the differentiation and the geometrical theorem of the trigonometric functions, this paper proposes a modified DACM algorithm with simplified expression but much improved performance for high-linear motion detection. Theoretical analysis was presented to introduce the proposed algorithm. Both simulation and experimental results demonstrate that the proposed algorithm is not only free from phase ambiguity, but also superior in several aspects: the stability under a signal to noise ratio (SNR) of 25 dB has been improved by 9 dB and the linearity of measuring large displacement motion has been improved by 32 dB, comparing to the existing DACM algorithm. Moreover, the simplified expression would greatly reduce the computational resources needed for linear phase demodulation.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"41 1","pages":"619-622"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82351785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel 32-Gb/s 5.6-Vpp Digital-to-Analog Converter in 100 nm GaN Technology for 5G Signal Generation","authors":"M. Weiß, C. Friesicke, R. Quay, O. Ambacher","doi":"10.1109/IMS30576.2020.9224080","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9224080","url":null,"abstract":"The RF-power digital-to-analog converter (DAC) presented here provides RF-signals in the gigabit regime with voltage swings up to 8.32 V, suitable to drive subsequent single-stage microwave gallium nitride (GaN) power amplifer for sub-six frequencies. A current-steering architecture is driven by a custom algorithm to provide a programmable high output current, up to 250 mA, to a capacitive load such as the capacitive input impedance of an single-stage GaN power amplifier. This architecture provides data rates up to 32 Gb/s with an custom encoding, while the output voltage swing at the load capacitance is higher than 5 Vpp. Therefore, slew rates of up to 76 V/ns can be established.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"37 1","pages":"952-955"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81117540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave Photonic Self-Adaptive Bandpass Filter and its Application to a Frequency Set-on Oscillator","authors":"G. Charalambous, S. Iezekiel","doi":"10.1109/IMS30576.2020.9224074","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9224074","url":null,"abstract":"Linear frequency networks are a class of analog systems comprising nonlinear elements but which have a linear relationship between the input and output instantaneous frequency. Examples of such networks find applications in self-adaptive bandpass filters and frequency set-on oscillators. Early implementations of these linear frequency networks were built exclusively with RF and microwave components, resulting in limited bandwidths. Here, we demonstrate their implementation with microwave photonics, which enables broader bandwidth operation with lower propagation losses (and hence longer delay lengths) for the development of, for example, high-Q set-on oscillators.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"3 1","pages":"103-106"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79467712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GaN and GaAs HEMT Channel Charge Model for Nonlinear Microwave and RF Applications","authors":"A. Parker","doi":"10.1109/IMS30576.2020.9223994","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9223994","url":null,"abstract":"An explicit energy-based expression for HEMT channel charge is proposed. The expression is a compact formulation that is superior for design and simulation tools. As an advancement over existing approaches, the new expression offers the well-behaved high-order linearity that is critical for wireless applications.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"15 1","pages":"424-427"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79694287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Wearable Throat Vibration Microwave Sensor Based on Split-Ring Resonator for Harmonics Detection","authors":"Yun-Rei Ho, Chin-Lung Yang","doi":"10.1109/IMS30576.2020.9223879","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9223879","url":null,"abstract":"This paper proposed a wearable throat vibration system using a microwave sensor. Compared with millimeterwave measurement systems, a simple split-ring resonator can clearly detect and evaluate vocal fold vibration in the industrial, scientific and medical band. Higher harmonics can still be identified and quantified. A high-sensitivity microwave split-ring resonator has a sharp resonance response corresponding to the variation of the electrical fields timely in the near field to detect throat vibration. The use of amplitude modulation can be detected using an envelope detector at low cost and sensitively senses details of the vibration from vocal fold. Finally, the actual measurement results prove that the microwave sensor can measure approximately eleventh harmonics.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"603 1","pages":"504-507"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77401128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A W-Band Rectenna Using On-Chip CMOS Switching Rectifier and On-PCB Tapered Slot Antenna Achieving 25% Effective-Power-Conversion Efficiency for Wireless Power Transfer","authors":"Pingyang He, Jie Xu, Dixian Zhao","doi":"10.1109/IMS30576.2020.9223846","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9223846","url":null,"abstract":"This paper presents a W-band rectenna unit, which incorporates an optimized CMOS switching rectifier and a print tapered slot antenna. Based on the analysis of the operation principle of the switching rectifier, this paper proposes an optimized structure of the switching rectifier and the body-diode effect (BDE) to improve reliability and power conversion efficiency (PCE). Besides, a high-gain W-band antipodal linearly tapered slot antenna (ALTSA) is implemented on PCB to improve the overall efficiency. The switching rectifier achieves a peak PCE of 45.8% at 94 GHz with improved reliability. The overall PCE of the rectenna unit up to 25% is achieved with 5.6 mW output dc power under 90 mW/cm2 incident power density. The proposed rectifier and rectenna achieve the highest PCE among recently reported W-band rectifiers and rectennas with different technologies","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"49 1","pages":"1055-1058"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73607708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 68-dB Isolation 1.0-dB Loss Compact CMOS SPDT RF Switch Utilizing Switched Resonance Network","authors":"Xi Fu, Yun Wang, Zheng Li, A. Shirane, K. Okada","doi":"10.1109/IMS30576.2020.9223854","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9223854","url":null,"abstract":"In this paper, a single-pole double-throw (SPDT) Ku-band RF switch with 68-dB port isolation and 1.0-dB insertion loss is presented with a novel switched parallel LC resonance network. The measured isolation is higher than 50 dB from 9 GHz to 19 GHz. The SPDT RF switch composes of two series-shunt transistor switch pairs with body-floating technology and a switched parallel LC network. The network uses a turned-off series transistor to resonate out off-capacitance Coff. The SPDT RF switch is fabricated in standard 65 nm CMOS technology. The measured results show the port-to-port isolation of 68-dB with 1.0-dB insertion loss at the center frequency of 15 GHz. The measured output third-order intercept (OIP3) is higher than 21 dBm with a 0.034 mm2 compact on-chip core size. The proposed SPDT RF switch maintains return losses of all working ports less than 10 dB from 8 GHz to 20 GHz.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"9 7","pages":"1315-1318"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72609826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Cha, N. Wadefalk, G. Moschetti, A. Pourkabirian, J. Stenarson, J. Grahn
{"title":"A 300-µW Cryogenic HEMT LNA for Quantum Computing","authors":"E. Cha, N. Wadefalk, G. Moschetti, A. Pourkabirian, J. Stenarson, J. Grahn","doi":"10.1109/IMS30576.2020.9223865","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9223865","url":null,"abstract":"This paper reports on ultra-low power 4–8 GHz (C-band) InP high-electron mobility transistor (HEMT) cryogenic low-noise amplifiers (LNAs) aimed for qubit amplification in quantum computing. We have investigated dc power dissipation in hybrid three-stage cryogenic LNAs using 100-nm gate length InP HEMTs with different indium content in the channel (65% and 80%). The noise performance at 300 K was found to be comparable for both channel structures. At 5 K, an LNA with 65% indium channel exhibited significantly lower noise temperature at any dc power dissipation compared to the LNA with 80% indium channel. The LNA with 65% indium channel achieved an average noise of 3.2 K with 23 dB gain at an ultra-low power consumption of 300 µW. To the best of authors' knowledge, the LNA exhibited the lowest noise temperature to date for sub-milliwatt power cryogenic C-band LNAs.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"15 1","pages":"1299-1302"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74768239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface-Volume-Surface EFIE for Analysis of 3-D Microwave Circuits in Multilayered Substrates With Finite Dielectric Inclusions","authors":"Shucheng Zheng, R. Gholami, V. Okhmatovski","doi":"10.1109/IMS30576.2020.9223829","DOIUrl":"https://doi.org/10.1109/IMS30576.2020.9223829","url":null,"abstract":"Novel formulation of the Surface-Volume-Surface Electric Field Integral Equation (SVS-EFIE) for rigorous full-wave electromagnetic analysis of composite metal-dielectric structures embedded in planar multilayered medium is proposed. Handling of multilayered medium dyadic Green's function (DGF) is based on Michalski-Zheng's mixed-potential formulation and does not require introduction of any additional components compared to those featured in the traditional mixed-potential integral equation (MPIE) formulations for the analysis of metal structures in layered medium. Characterization of microwave circuits and interconnect structures embedded in dielectric substrates featuring finite dielectric inclusions are among applications well suited for handling with the new single source integral equation formulation. Proposed methodology is validated through comparison of extracted network parameters of realistic 3D model of LTCC diplexer against those obtained with a commercial electromagnetic analysis tool.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"3 1","pages":"143-145"},"PeriodicalIF":0.0,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73257432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}