A Silicon-Based Closed-Loop 256-Pixel Near-Field Capacitive Sensing Array with 3-ppm Sensitivity and Selectable Frequency Shift Gain

Jia Zhou, Chia-Jen Liang, Christopher Chen, Jieqiong Du, R. Huang, R. Al Hadi, J. Hwang, Mau-Chung Frank Chang
{"title":"A Silicon-Based Closed-Loop 256-Pixel Near-Field Capacitive Sensing Array with 3-ppm Sensitivity and Selectable Frequency Shift Gain","authors":"Jia Zhou, Chia-Jen Liang, Christopher Chen, Jieqiong Du, R. Huang, R. Al Hadi, J. Hwang, Mau-Chung Frank Chang","doi":"10.1109/IMS30576.2020.9224059","DOIUrl":null,"url":null,"abstract":"This paper presents a two-dimensional capacitive sensor circuit implemented in 28-nm silicon technology for material characterization. The circuit is based on a 4.5-GHz quadrature oscillator with a single inductor and distributed capacitor array with 12.6-um pitch. The 16×16 sensor array is designed with minimal signal energy loss to enable scalable designs. The quadrature oscillator is embedded in a trans-linear loop for frequency shift amplification up to 36 times with an acquisition bandwidth of 2.4 MHz. The readout time for single pixel drops below the limit set by the quantization noise floor and reaches near optimal window, while the sensor maintains a sensitivity of 3 ppm. A mixer is used to down-convert the high-frequency component to an intermediate frequency. A digital core is used to acquire and process the data.","PeriodicalId":6784,"journal":{"name":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","volume":"46 1","pages":"464-467"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMS30576.2020.9224059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a two-dimensional capacitive sensor circuit implemented in 28-nm silicon technology for material characterization. The circuit is based on a 4.5-GHz quadrature oscillator with a single inductor and distributed capacitor array with 12.6-um pitch. The 16×16 sensor array is designed with minimal signal energy loss to enable scalable designs. The quadrature oscillator is embedded in a trans-linear loop for frequency shift amplification up to 36 times with an acquisition bandwidth of 2.4 MHz. The readout time for single pixel drops below the limit set by the quantization noise floor and reaches near optimal window, while the sensor maintains a sensitivity of 3 ppm. A mixer is used to down-convert the high-frequency component to an intermediate frequency. A digital core is used to acquire and process the data.
一种硅基闭环256像素近场电容传感阵列,具有3ppm的灵敏度和可选的频移增益
提出了一种采用28纳米硅技术实现的二维电容式传感器电路,用于材料表征。该电路基于4.5 ghz正交振荡器,具有单电感和12.6 um间距的分布式电容器阵列。16×16传感器阵列设计具有最小的信号能量损失,以实现可扩展的设计。正交振荡器嵌入在跨线性环路中,频移放大高达36倍,采集带宽为2.4 MHz。单个像素的读出时间降至量化噪声底限以下,达到接近最佳窗口,而传感器保持3 ppm的灵敏度。混频器用于将高频分量下变频到中频。数字核心用于采集和处理数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信