Haiting Zou , Miaomiao Pan , Ping Wang , Feng Chen , Xuefei Wang , Huogen Yu
{"title":"2D/2D Mo2CTx/g-C3N4 with a strong coupling interface via one-step NH4Cl-assisted calcination for enhanced photocatalytic hydrogen production†","authors":"Haiting Zou , Miaomiao Pan , Ping Wang , Feng Chen , Xuefei Wang , Huogen Yu","doi":"10.1039/d4cy00882k","DOIUrl":"10.1039/d4cy00882k","url":null,"abstract":"<div><div>Mo<sub>2</sub>CT<sub>x</sub> is regarded as a potential cocatalyst to substitute noble metals in photocatalytic hydrogen production owing to its good electrical conductivity and a large number of active sites. However, Mo<sub>2</sub>CT<sub>x</sub>-based photocatalysts by the conventional physical mixing method always display a weak coupling interface between Mo<sub>2</sub>CT<sub>x</sub> and photocatalysts due to the large block-layered structure of Mo<sub>2</sub>CT<sub>x</sub>, which results in slow photogenerated-electron transfer of photocatalysts, thereby leading to unsatisfactory hydrogen production efficiency. Considering that <em>in situ</em> construction and the 2D/2D structure can increase the contact area and enhance the coupling interface interaction, in this study, a strategy of constructing a 2D/2D Mo<sub>2</sub>CT<sub>x</sub>/g-C<sub>3</sub>N<sub>4</sub> photocatalyst from pre-etched Mo<sub>2</sub>CT<sub>x</sub> and guanidine hydrochloride (CH<sub>6</sub>ClN<sub>3</sub>) through a one-step NH<sub>4</sub>Cl-assisted calcination method is realized by the gas-expansion exfoliation of Mo<sub>2</sub>CT<sub>x</sub> and <em>in situ</em> generation of thin g-C<sub>3</sub>N<sub>4</sub> nanosheets. Experimental results unveiled that the 2D/2D Mo<sub>2</sub>CT<sub>x</sub>/g-C<sub>3</sub>N<sub>4</sub> composite photocatalyst exhibits an exceptional H<sub>2</sub>-evolution activity (125 μmol h<sup>−1</sup> g<sup>−1</sup>, AQE = 3.88%), which is almost 25 and 18 times greater than that of pure g-C<sub>3</sub>N<sub>4</sub> and physically mixed Mo<sub>2</sub>CT<sub>x</sub>–g-C<sub>3</sub>N<sub>4</sub>, respectively. The enhanced photocatalytic H<sub>2</sub>-production efficiency is attributed to the robust coupling interface between Mo<sub>2</sub>CT<sub>x</sub> and g-C<sub>3</sub>N<sub>4</sub> in 2D/2D Mo<sub>2</sub>CT<sub>x</sub>/g-C<sub>3</sub>N<sub>4</sub>, which promotes the fast photogenerated electron transfer from g-C<sub>3</sub>N<sub>4</sub> to Mo<sub>2</sub>CT<sub>x</sub> and achieves an optimized Gibbs free energy. This study offers a novel perspective on preparing high-efficiency 2D/2D MXene-based photocatalysts.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5731-5738"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaqi Yao , Hongying Zhuo , Fanan Wang , Guiyue Bi , Jinming Xu , Xiaofeng Yang , Yanqiang Huang
{"title":"Synergism between B–N atomic pair for promoting the catalytic cracking of 1,2-dichloroethane†","authors":"Yaqi Yao , Hongying Zhuo , Fanan Wang , Guiyue Bi , Jinming Xu , Xiaofeng Yang , Yanqiang Huang","doi":"10.1039/d4cy00774c","DOIUrl":"10.1039/d4cy00774c","url":null,"abstract":"<div><div>The catalytic cracking of 1,2-dichloroethane (EDC) to obtain vinyl chloride (VCM) monomer is a crucial step in the production of polyvinyl chloride (PVC). The heteroatom-doped carbon catalysts have exhibited desired performance; however, the underlying mechanism is still not fully understood. Herein, a series of B–N co-doped carbon (BNC), N-doped carbon (NC), B-doped carbon (BC) and pure carbon (C) catalysts were prepared for EDC catalytic cracking, and the synergistic mechanism between B and N was carefully investigated. The BNC catalyst exhibits prominently higher activities with an EDC conversion of 53.9% at 250 °C. Through a combination of experimental and theoretical analyses, it is rationalized that the formation of the B–N atomic pair contributes to the enhanced performance and the electronic interaction between the B–N atomic pair imparts greater basicity to the N sites, which reduces the activation energy barrier for C–H bond cleavage by 0.34 eV. The present results provide a theoretical foundation for the precise design of highly efficient non-metallic carbon-based catalysts for EDC cracking.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5599-5607"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00774c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Friedrich Hubertus Roth , Maximilian Lukas Spiekermann , David Lütkenhaus , Fabian Niefer , Dieter Vogt , Thomas Seidensticker
{"title":"The effect of polyunsaturation – insights into the hydroformylation of oleochemicals†","authors":"Thomas Friedrich Hubertus Roth , Maximilian Lukas Spiekermann , David Lütkenhaus , Fabian Niefer , Dieter Vogt , Thomas Seidensticker","doi":"10.1039/d4cy00839a","DOIUrl":"10.1039/d4cy00839a","url":null,"abstract":"<div><div>Although the hydroformylation of vegetable oil-derived oleochemicals, such as methyl oleate, is a highly demanded reaction and has been intensively studied, little is known about the influence of naturally occurring polyunsaturated (PU) components and their effect on the homogeneous rhodium catalyst. This is now examined in detail in the presented work by conducting systematic perturbation experiments. For the first time, it can be verified that the isomerisation of double bonds in polyunsaturated oleochemicals generates conjugated double bond systems that form stable η<sup>3</sup>-Rh allyl species and thus temporarily inhibit the catalyst. However, based on these findings, hydroformylation activity can be significantly increased by selective hydrogenation of PU to monounsaturated components. In the case of sunflower methyl ester, the turnover frequency multiplied by a factor of 8 and reached 3201 h<sup>−1</sup>, the highest rate reported in the context of methyl oleate hydroformylation. These effects were shown for both phosphine and phosphite ligands under both mono- and biphasic conditions and for methyl esters with different PU content, stressing the magnitude of this effect. This work makes it possible to support long-observed phenomena with the underlying mechanism scientifically. This lays the scientific basis for efficiently converting oleochemicals into valuable intermediates through hydroformylation for an increased share of renewable carbon in the chemical value chain.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5551-5558"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00839a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohsin Pasha , Yuhan Wang , You Ma , Guozhi Qian , Xiao Xue , Hong Zhang , Yong Yang , Minjing Shang , Pengfei Zhang , Yuanhai Su
{"title":"Scalable and green juglone synthesis via heterogeneous photocatalysis in a photomicroreactor†","authors":"Mohsin Pasha , Yuhan Wang , You Ma , Guozhi Qian , Xiao Xue , Hong Zhang , Yong Yang , Minjing Shang , Pengfei Zhang , Yuanhai Su","doi":"10.1039/d4cy00778f","DOIUrl":"10.1039/d4cy00778f","url":null,"abstract":"<div><div>The selection of green and scalable heterogeneous photocatalysis is always a great dilemma for the chemistry and chemical engineering communities. In this report, we resolved this vital conundrum by synergistically examining the scalability and green potential of heterogeneous photocatalysis for juglone synthesis. We scaled up juglone productivity and the space–time yield to 15 g per day and 43.87 g L<sup>−1</sup> h<sup>−1</sup>, respectively, <em>via</em> heterogeneous photocatalysis with a high-power LED as a light source and Amb–<em>m</em>-TcPP as a photocatalyst, which was fabricated by incorporating <em>meso</em>-tetracarboxyphenylporphyrine (<em>m</em>-TcPP) over the polystyrene ion-exchange resin Amberlyst-15. Amb–<em>m</em>-TcPP showed excellent recyclability in multiple cycles and exhibited high photostability for 12 h continuous operation without <em>m</em>-TcPP leaching with a turnover frequency of 409.7 h<sup>−1</sup>. The apparent rate constants were higher than those in previously employed heterogeneous photocatalysis, and intrinsic rate constants of intermediate steps were evaluated using transition state theory with quantum mechanical models using DFT simulations, which was useful for gaining mechanistic insights into this photooxidation process. Finally, heterogeneous DHN photooxidation was confirmed to be well aligned with green chemistry principles, and <em>E</em> factors were found to be under an acceptable range. Thus, this heterogeneous DHN photooxidation can be regarded as a green and sustainable synthesis route for multigram juglone production.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5755-5763"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CeO2-modified monolithic ceramic foams for efficient catalytic ozonation of refractory organic pollutants in a continuous-flow reactor†","authors":"Yang Zhao , Wenfei Ding , Xiaochi Chen , Shuo Chen","doi":"10.1039/d4cy00710g","DOIUrl":"10.1039/d4cy00710g","url":null,"abstract":"<div><div>Heterogeneous catalytic ozonation is valid for the advanced oxidation of organic pollutants in wastewater, but it is usually used in the packing bed with granular supports/catalysts with considerable fluid resistance and unsatisfactory ozone utilization efficiency in practical wastewater treatment. Herein, CeO<sub>2</sub>-modified monolithic ceramic foams (CeO<sub>2</sub>/AlCF) were developed for the efficient catalytic ozonation of refractory organic pollutants in a continuous-flow mode. The TOC removal efficiency of phenol by CeO<sub>2</sub>/AlCF was about 80% with a hydraulic retention time (HRT) of 12 min. The system also showed high TOC removal efficiencies (68%–81%) for other organic pollutants including oxalic acid, 2,4-dimethylphenol, and <em>p</em>-nitrophenol. The chemical oxygen demand (COD) of the biological treatment effluent of petrochemical wastewater decreased from 136 mg L<sup>−1</sup> to 45.2 mg L<sup>−1</sup> with a COD removal efficiency of nearly 67%. The ozone utilization efficiencies of CeO<sub>2</sub>/AlCF ranged from 53% to 73%, which were much higher than those of granular catalysts (42–68%). The quenching experiments and EPR analysis revealed that the process followed a hydroxyl radical mechanism. H<sub>2</sub> temperature-programmed reduction (H<sub>2</sub>-TPR) analysis showed that the transition of Ce<sup>4+</sup> to Ce<sup>3+</sup> in CeO<sub>2</sub>/AlCF was much easier than that in CeO<sub>2</sub> and hence had a better catalytic capability.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5653-5661"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multistep screening of transition-metal-based homonuclear double-atom catalysts to unravel the electronic origin of their activity and selectivity challenges for nitrogen reduction†","authors":"Anjumun Rasool , Manzoor Ahmad Dar","doi":"10.1039/d4cy00480a","DOIUrl":"10.1039/d4cy00480a","url":null,"abstract":"<div><div>Lack of robust catalyst design strategies for tackling the selectivity and activity challenges poses serious limitations in the development of efficient catalysts for nitrogen reduction to ammonia. The synergistic interactions in double-atom catalysts (DACs) have aroused great interest in developing promising catalytic centers for the nitrogen reduction reaction (NRR). Using a multistep screening strategy based on systematic first-principles simulations, we find that Fe<sub>2</sub>, Co<sub>2</sub>, and W<sub>2</sub> dimer species impregnated in a tetracyanoquinodimethane-based monolayer achieve suitable adsorption behaviour for the various NRR intermediates, leading to excellent activity and selectivity among the 27 DACs considered in this study for the NRR. Interestingly, our results reveal very low limiting potential values of −0.56, −0.58, and −0.53 V for Fe<sub>2</sub>, Co<sub>2</sub>, and W<sub>2</sub>, respectively, compared to the experimentally reported values of −0.73 and −0.98 V for the Ru-based single-atom catalyst and Ru(0001) stepped surface. Density of states analysis indicated that the adsorption pattern of the reaction intermediates was regulated by the d-states of the DACs near the Fermi level. Correlation trends between the limiting potential and the free energy change for adsorption of different intermediates show that the free energy change for N<sub>2</sub> adsorption proves a suitable guidance to evaluate the NRR activity of the modelled catalysts. Further, rigorous electronic structure analysis highlighted properties such as integrated crystal orbital Hamilton populations and orbital projected density of states, and the d-band centre could be successfully used to rationalize the N<sub>2</sub> binding and adsorption on these catalysts. Thus, this work provides a feasible design strategy for NRR electrocatalysis based on extensive electronic structure concepts.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5687-5698"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Chen , Dingjie Luo , Qinqin Wang , Long Zhou , Yufan Ma , Fangjie Lu , Bin Dai
{"title":"Carbon-supported Zn-HPW ligand catalysts for acetylene hydration†","authors":"Zhen Chen , Dingjie Luo , Qinqin Wang , Long Zhou , Yufan Ma , Fangjie Lu , Bin Dai","doi":"10.1039/d4cy00806e","DOIUrl":"10.1039/d4cy00806e","url":null,"abstract":"<div><div>In recent years, the production of acetaldehyde with rich raw materials still has high research value. A series of Zn-HPW/AC catalysts with a Zn–O<sub>4</sub> configuration were prepared to solve the problems of easy loss of active components and carbon accumulation of Zn-based catalysts in the reaction. The characterization results showed that the phosphotungstic acid (HPW) ligands effectively promoted Zn species dispersion, provided more acid sites, mitigated the loss of Zn, and improved the carbon deposition resistance of the catalyst. The density functional theory (DFT) calculation further confirmed that the water molecules preferentially adsorb on the surface of the catalyst to promote the dissociation of water molecules, and the H of dissociation from water molecules and Zn forms the most stable Zn–OH configuration, which is the main active center of the reaction. Meanwhile the –OH dissociated from water molecules is adducted with C<sub>2</sub>H<sub>2</sub>, while H reduces the catalyst, and the original H atoms in the ligand catalyst further participate in the reaction to realize the catalytic cycle. This provides a new idea for the development of green catalysts for acetylene hydration.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5739-5745"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harry N. Thomas , Duncan F. Wass , Caroline A. Offiler , Keith Whiston , Andrew J. Logsdail
{"title":"First principles investigation of manganese catalyst structure and coordination in the p-xylene oxidation process†","authors":"Harry N. Thomas , Duncan F. Wass , Caroline A. Offiler , Keith Whiston , Andrew J. Logsdail","doi":"10.1039/d4cy00284a","DOIUrl":"10.1039/d4cy00284a","url":null,"abstract":"<div><div>The oxidation of <em>p</em>-xylene to terephtalic acid has global importance, with the product used as a precursor for polyethylene terephthalate (PET). The oxidation of <em>p</em>-xylene proceeds <em>via</em> a redox cascade that involves cobalt, manganese, and bromide, with a synergy allowing for high selectivity and reactivity; however, the equilibrium coordination environment of the catalyst species remains uncertain due to the hostile industrial operating conditions. To build knowledge of the catalyst speciation and develop understanding of the reaction process, a density functional theory approach is applied herein to determine the static and dynamic properties of the divalent (reduced) and trivalent (oxidized) manganese catalysts in the redox cascade. The Gibbs free energy has been calculated for manganese as a function of ligands in the inner coordination sphere, with the octahedrally-coordinated Mn(OAc)<sub>2</sub>(HOAc)<sub>2</sub> and Mn(OAc)<sub>3</sub>(H<sub>2</sub>O)<sub>1</sub> identified as the most thermodynamically stable coordination environments for Mn(<span>ii</span>) and Mn(<span>iii</span>), respectively. Dynamic properties of these catalysts in the presence of an explicit solvent environment have been determined using first principles molecular dynamics simulations. The simulations indicate 0–2 coordinating water ligands are present in the inner coordination sphere under standard industrial temperatures and pressures. The dynamical simulations have been extended to include HBr, which couples with Mn in the redox cascade, and the bromide species does not enter in the inner-coordination sphere of the oxidized Mn(<span>iii</span>) catalyst, providing evidence that the electron transfer between bromide and Mn(<span>iii</span>) proceeds <em>via</em> an outer sphere mechanism. Our results suggest that oxidation of Mn(<span>ii</span>) has the potential for facilitating L-type ligand exchange in the inner-sphere coordination environment. The results are a platform for developing a more complete knowledge of the reaction mechanism at the atomistic scale.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5634-5643"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00284a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander S. Behr , Diana Chernenko , Dominik Koßmann , Arjun Neyyathala , Schirin Hanf , Stephan A. Schunk , Norbert Kockmann
{"title":"Generating knowledge graphs through text mining of catalysis research related literature†","authors":"Alexander S. Behr , Diana Chernenko , Dominik Koßmann , Arjun Neyyathala , Schirin Hanf , Stephan A. Schunk , Norbert Kockmann","doi":"10.1039/d4cy00369a","DOIUrl":"10.1039/d4cy00369a","url":null,"abstract":"<div><div>Structured research data management in catalysis is crucial, especially for large amounts of data, and should be guided by FAIR principles for easy access and compatibility of data. Ontologies help to organize knowledge in a structured and FAIR way. The increasing numbers of scientific publications call for automated methods to preselect and access the desired knowledge while minimizing the effort to search for relevant publications. While ontology learning can be used to create structured knowledge graphs, named entity recognition allows detection and categorization of important information in text. This work combines ontology learning and named entity recognition for automated extraction of key data from publications and organization of the implicit knowledge in a machine- and user-readable knowledge graph and data. CatalysisIE is a pre-trained model for such information extraction for catalysis research. This model is used and extended in this work based on a new data set, increasing the precision and recall of the model with regard to the data set. Validation of the presented workflow is presented on two datasets regarding catalysis research. Preformulated SPARQL-queries are provided to show the usability and applicability of the resulting knowledge graph for researchers.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5699-5713"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cy/d4cy00369a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu-You Cao , Shi-Yin Xu , Ling-Wei Wu , Yi-Feng Qiu , Hao Zhang , Li-Ping Si , Li-Ming Wang , Hai-Yang Liu
{"title":"Co(iii) corroles with pendant amidophenol and amidopyridine as proton-relay arms to facilitate the electrocatalytic hydrogen evolution reaction†","authors":"Xu-You Cao , Shi-Yin Xu , Ling-Wei Wu , Yi-Feng Qiu , Hao Zhang , Li-Ping Si , Li-Ming Wang , Hai-Yang Liu","doi":"10.1039/d4cy00677a","DOIUrl":"10.1039/d4cy00677a","url":null,"abstract":"<div><div>It is known that the efficiency of the hydrogen evolution reaction (HER) can be promoted by the presence of proton relay groups neighboring a catalytic metal center. This work reports the synthesis of two new Co(<span>iii</span>) corroles (<strong>2</strong> and <strong>3</strong>) with hangman proton relay groups for the electrocatalytic HER. When using trifluoroacetic acid (TFA) as a proton source, complexes <strong>2</strong> and <strong>3</strong> exhibited turnover frequencies (TOFs) of 219.36 s<sup>−1</sup> and 199.57 s<sup>−1</sup>, respectively. The catalytic HER undergoes <em>via</em> the EECEC or EECC pathway (E: electron transfer; C: charge transfer) depending on the acidity and concentration of the proton source. Moreover, complex <strong>2</strong> and <strong>3</strong> also showed good HER activity in aqueous media with Faraday efficiencies (FEs) of 93.6% and 89.2% respectively.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"14 19","pages":"Pages 5608-5615"},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}