{"title":"PC-SAFT Model on Molecular Interactions in Acetophenone with Chloroalkanes and Chloroalkenes Solutions at Different Temperatures: Volumetric, Acoustic, and Electromagnetic Approach","authors":"Shahriar Shahvarpour, Hossein Iloukhani, Khatereh Khanlarzadeh","doi":"10.1007/s10953-024-01413-4","DOIUrl":"10.1007/s10953-024-01413-4","url":null,"abstract":"<div><p>The study aimed to investigate the properties of thermodynamics, acoustics, and electromagnetism in order to understand the interactions between molecules both within and between different compounds. The study also examined how molecular shape and structure, as well as temperature and the presence of chlorine atoms in alkanes and alkenes, influenced these properties. Measurements were taken for densities (<i>ρ</i>), speeds of sound (<i>u</i>), and refractive indices (<span>({n}_{text{D}})</span>) in various mixtures containing acetophenone with 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, trichloroethene or tetrachloroethene at temperatures ranging from 298.15 K to 318.15 K. Additionally, excess molar volumes (<span>({V}_{text{m}}^{text{E}})</span>), isentropic compressibilities<span>(({K}_{s})</span>), excess isentropic compressibilities (<span>({kappa }_{text{S}}^{text{E}})</span>), and excess refractive index <span>({(n}_{text{D}}^{text{E}}),)</span> were calculated. The quantities were correlated with the Werblan relation. The <span>({V}_{text{m}}^{text{E}})</span> values exhibited negative for all mixtures except for acetophenone + 1,2-dichloroethane which had positive values while the tetrachloroethene system showed both positive and negative values. The <span>(({kappa }_{text{S}}^{text{E}}),)</span> values were showed negative for all binary mixtures. Lastly, <span>(text{the} {(n}_{text{D}}^{text{E}}))</span> values for acetophenone with 1,2-dichloroethane were negative and with tetrachloroethene an inversion in sign at low volume fraction of acetophenone was observed. For the three remaining binary mixtures the <span>({(n}_{text{D}}^{text{E}}))</span> values were exhibited positive. The PC-SAFT model accurately predicted mixture densities and matched well with experimental data.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 2","pages":"141 - 167"},"PeriodicalIF":1.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calculation of Solute Partition Coefficient Using the A-P Scheme","authors":"Xinliang Yu, Zekai Zhang","doi":"10.1007/s10953-024-01417-0","DOIUrl":"10.1007/s10953-024-01417-0","url":null,"abstract":"<div><p>Although many models have been developed for solute partition coefficient (or solvation Gibbs free energy, Δ<i>G</i><sub>solv</sub>), how to develop models for rapid and accurate solvation energy predictions still remains challenging. In this work, a relation named the A-P scheme based on the Q–e scheme in radical copolymerizations and the Arrhenius equation for chemical kinetics is for the first time proposed to correlate the partition coefficients with supposed nonpolar and polar contributions from solute and solvent molecules. When compounds used as a solute or a solvent were allocated a parameter <i>A</i> denoting nonpolar contribution and another parameter <i>P</i> meaning polar contribution, the partition coefficients (or solvation Gibbs energies) of any solute/solvent pair can be calculated with the A-P scheme. Further, 6238 experimental solvation Gibbs energies were used to test the A-P scheme, resulting in a root means square (<i>rms</i>) error of 2.89 kJ·mol<sup>−1</sup>, lower than the chemical accuracy of 4.18 kJ·mol<sup>−1</sup>. Unlike other empirical approaches or quantitative structure–property relationship (QSPR) models, the proposed new scheme in this paper is not restricted to a specific solvent or solute and has markedly less computational intensity in predicting solute partition coefficient (or solvation Gibbs free energy). Therefore, the A-P scheme proposed in this work is feasible in rapid and accurate calculation of solvation Gibbs energies.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 2","pages":"246 - 261"},"PeriodicalIF":1.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naushad Anwar, Mohammad Jane Alam, Shabbir Ahmad, Abdullah Alarifi, Mohd Afzal
{"title":"Molecular Interactions in Binary Mixtures of n-Alkylmethylimidazolium bis(trifluoromethylsulfonyl)imide + Acetonitrile: Thermophysical and Density Functional Theory Studies","authors":"Naushad Anwar, Mohammad Jane Alam, Shabbir Ahmad, Abdullah Alarifi, Mohd Afzal","doi":"10.1007/s10953-024-01418-z","DOIUrl":"10.1007/s10953-024-01418-z","url":null,"abstract":"<div><p>This work is based on the investigation of thermophysical properties of pure ionic liquids {ILs; 1-ethyl-/1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [EMIM][(NTf)<sub>2</sub>], [BMIM][(NTf)<sub>2</sub>], solvent acetonitrile (ACN), and its binary mixtures. Under these investigations, density (<i>ρ</i>) and ultrasonic velocity (<i>u</i>) were measured using high-precision vibrating-tube densitometer and viscosity (<i>η</i>) with an automated falling ball microviscometer for all components as functions of the mole fraction of ILs (<span>({x}_{1})</span>) at <i>T</i> = 298.15–323.15 K and <i>p</i> = 0.1 MPa. <i>ρ</i>, <i>u</i>, and <i>η</i> data of pure and binary components were used to evaluate excess/deviation parameters, and these parameters are correlated utilizing the extended form of Redlich–Kister equation. Interactions inside the ion pair of ILs and ILs–solvent are well discussed in terms of various specific/nonspecific forces of attractions. The interactions between the ion pair <span>(({[text{EMIM}]}^{+})</span>/<span>(left[text {BMIM}right]^{+})</span> and <span>({left[{text{NTf}}_{2}right]}^{-}))</span> as well as IL solvent was calculated using Density Functional Theory (DFT) in terms of various parameters at the D3-B3LYP/6–311 + + G(d,p) level of theory. Moreover, various molecular properties, including structures, frontier molecular orbitals, electrostatic potentials, atomic charges, dipole moments, interaction energies, reactivity descriptors, zero-point energy (ZPE), and heat capacity, were obtained at the same level of theory. Thereafter, the natural bond orbital (NBO) analyses were performed to see all the interactions between donor–acceptor atoms at molecular level.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 2","pages":"218 - 245"},"PeriodicalIF":1.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Excess Chemical Potential for Hard-Sphere Diatomic Liquid from Integral Equation Approach","authors":"Banzragch Tsednee","doi":"10.1007/s10953-024-01414-3","DOIUrl":"10.1007/s10953-024-01414-3","url":null,"abstract":"<div><p>The reference interaction site model (RISM) theory has been employed in the study of hard homonuclear and heteronuclear diatomic liquids. The RISM equation coupled with the Percus–Yevick and Martynov–Sarkisov closures has been solved numerically. The excess chemical potential has been computed using analytic expression based on correlation functions. An improved prediction of an excess chemical potential has been done with an interpolation scheme, which relates an excess chemical potential for hard-sphere fluid to that of tangent hard-sphere diatomic fluid at the same density. Our findings for an excess chemical potential for hard homonuclear fluid are compared with available accurate data. Maximum deviations of the excess chemical potential from the Percus–Yevick and Martynov–Sarkisov approximations are of <span>(9.56%)</span> and of <span>(5.58%)</span>, respectively. Some values of numerically obtained excess chemical potential for hard heteronuclear diatomic fluid present good comparison with available Monte Carlo data. To our knowledge, this is the first attempt to calculate an excess chemical potential for hard diatomic fluid in the Martynov–Sarkisov approximation. Moreover, radial distribution functions for hard-sphere, tangent hard homonuclear, and heteronuclear diatomic fluids from the Martynov-Sarkisov approximation are in good agreement with those in the literature.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 2","pages":"204 - 217"},"PeriodicalIF":1.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hadi Taheri Parsa, Hossein Iloukhani, Khatereh Khanlarzadeh
{"title":"Correlation Between PFP, ERAS, PC-SAFT Models and Experimental Validation Through Thermodynamic and Spectroscopic Analysis of Acetonitrile with Chloro Derivatives of Ethane Binary Mixtures at Varying Temperatures","authors":"Hadi Taheri Parsa, Hossein Iloukhani, Khatereh Khanlarzadeh","doi":"10.1007/s10953-024-01411-6","DOIUrl":"10.1007/s10953-024-01411-6","url":null,"abstract":"<div><p>The goal of this research is to examine the characteristics and interactions of mixtures containing acetonitrile (ACN) and various chloro derivatives of ethane, including 1,2-dichloroethane, 1,1,1-trichloroethane, and 1,1,2,2-tetrachloroethane. To accomplish this objective, measurements for density (<i>ρ</i>), speed of sound (<i>u</i>), and refractive index (<i>n</i><sub>D</sub>) were taken at temperatures between 293.15 K and 303.15 K and an ambient pressure of 81.5 kPa. Various thermodynamic derived properties such as excess molar volumes (<span>({V}_{text{m}}^{text{E}})</span>), excess isentropic compressibilities (<span>({kappa }_{text{S}}^{text{E}})</span>), viscosity deviations (Δ<i>η</i>), excess Gibbs energy of activation (<span>({Delta G}^{*text{E}})</span>), and refractive indices deviation (<span>(Delta n_{varphi {text{D}}})</span>) were determined within the specified temperature range. The experimental data were analyzed using the Redlich–Kister polynomial relation for correlation purposes. Furthermore, the Prigogine–Flory–Patterson Theory (PFP) and Extended Real Association Solution (ERAS) models were utilized to correlate the excess molar volumes, while the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) model with one adjustable parameter was used to correlate densities. Additionally, the Fourier Transform Infrared spectroscopy (FT-IR) was employed to explore interactions between these different molecules. The results obtained indicate that intermolecular forces in these substances are altered when they are combined in mixtures.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 2","pages":"178 - 203"},"PeriodicalIF":1.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liquid–Liquid Equilibria Data and Thermodynamic Modeling of {Mesityl Oxide + Diethoxymethane + Water} Ternary System at 303.15, 313.15, 323.15 K Under 101.325 kPa","authors":"Hongyue Guo, Tao Li, Qingsong Li, Zhongtao Li","doi":"10.1007/s10953-024-01398-0","DOIUrl":"10.1007/s10953-024-01398-0","url":null,"abstract":"<div><p>The liquid–liquid equilibrium (LLE) of the mesityl oxide + diethoxymethane + water was determined at 303.15, 313.15 and 323.15 K under 101.325 kPa, which was consistent with the Treybal’s type II ternary phase behavior. The distribution coefficients (<i>D</i>) and selectivity coefficients (<i>S</i>) were used to evaluate the extraction ability of mesityl oxide to extract diethoxymethane from water. The experimental data were correlated with the NRTL and UNIQUAC thermodynamic models, and the <i>RMSD</i> values are both less than 0.47%, indicating that the two models can well correlate the experimental data.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 2","pages":"168 - 177"},"PeriodicalIF":1.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermophysical Properties for Binary Mixtures of Cumene and Linear/Cyclic Ketones, at Several Temperatures and Atmospheric Pressure","authors":"Dana Drăgoescu, Alexander Shchamialiou","doi":"10.1007/s10953-024-01403-6","DOIUrl":"10.1007/s10953-024-01403-6","url":null,"abstract":"<div><p>The thermophysical properties, as densities, speeds of sound, and refractive indices, for pure compounds: <i>iso</i>-propylbenzene (cumene), cyclopentanone, and diethylketone (3-pentanone), as well as for their two selected binary mixtures, have been measured over the entire range of composition, at few temperatures between (298.15 and 318.15) K and atmospheric pressure <i>p</i> = 0.1 MPa. From the experimental results, the thermodynamic properties, namely: the excess molar volumes, the partial or apparent molar volumes, the isentropic compressibilities, the excess isentropic compressibilities and the excess molar isentropic compressions, have been calculated. The values of experimental excess molar volumes have been used to test the applicability of the Prigogine–Flory–Patterson (PFP) theory and the results were analyzed in terms of molecular interactions and structural effects, occurred between the components of the mixtures. Moreover, from the measured densities data, the surface tensions and the surface tension deviations, for both mixtures have been predicted. Also, using the experimental density and speed of sound data, the acoustic impedance values were estimated. From the experimental refractive index data, the deviations in refractive indices, the molar refractions and the excess molar refractions, have been calculated. Furthermore, the refractive indices values have been used for the prediction of the space-filling factor and the specific refraction. All the excess thermodynamic properties calculated for both mixtures, have been correlated with composition by the Redlich–Kister polinomial equation. The values of the excess properties have been represented graphically. The parameters of correlation were estimated and their values have been reported at working temperatures.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 1","pages":"1 - 30"},"PeriodicalIF":1.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermophysical and Excess Properties of Binary Mixtures of Dibutyl Ether and Components of Biodiesel","authors":"Dan Li, Xuena Zhang, Chunling Xin, Meifang Liu","doi":"10.1007/s10953-024-01419-y","DOIUrl":"10.1007/s10953-024-01419-y","url":null,"abstract":"<div><p>Densities, dynamic viscosities, and refractive indices for four binary mixtures formed by dibutyl ether with ethyl caprylate, ethyl caprate, ethyl laurate or ethyl myristate over the whole composition range were measured at <i>T</i>=(293.15–323.15 K) and atmospheric pressure. The excess molar volume (<i>V</i><sub>m</sub><sup>E</sup>), viscosity deviation (Δ<i>η</i>), and refractive index deviation (Δ<i>n</i><sub>D</sub>) for the four systems are calculated and then correlated to the Redlich–Kister polynomial. The <i>V</i><sub>m</sub><sup>E</sup> and Δ<i>η</i> values are all negative over the entire range of mole fractions. The absolute values of <i>V</i><sub>m</sub><sup>E</sup> for the mixtures increase with increasing temperature and the absolute values of Δ<i>η</i> decrease with increasing temperature. The Δ<i>n</i><sub>D</sub> values with the volume fraction for the four binary systems are all positive over the entire composition range. The experimental results can provide reliable data for the compatibility of biodiesels and their blended fuels.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 1","pages":"125 - 139"},"PeriodicalIF":1.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vahid Jouyban-Gharamaleki, Elaheh Rahimpour, Abolghasem Jouyban
{"title":"Modeling and Experimental Measurement of NaCl and KCl Solubility: A Laser Monitoring-Based Method","authors":"Vahid Jouyban-Gharamaleki, Elaheh Rahimpour, Abolghasem Jouyban","doi":"10.1007/s10953-024-01415-2","DOIUrl":"10.1007/s10953-024-01415-2","url":null,"abstract":"<div><p>This study presented the experimental data for NaCl and KCl solubility in the 1-propanol, 2-propanol, 1-butanol, acetonitrile, and propylene glycol. The solubility values were measured by a laser-based technique at 293.15–313.15 K and the generate data were correlated to some mathematical models and their accuracy was studied by the mean relative deviations for the back-calculated data. Furthermore, the apparent thermodynamic parameters of NaCl and KCl dissolution were also studied according to the van’t Hoff and Gibbs equations.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 1","pages":"109 - 124"},"PeriodicalIF":1.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solubility and Thermodynamics of Ivermectin in Aqueous Mixtures of 1-Propanol/2-Propanol","authors":"Soma Khezri, Reza Ghotaslou, Kader Poturcu, Jafar Soleymani, Elaheh Rahimpour, Abolghasem Jouyban","doi":"10.1007/s10953-024-01416-1","DOIUrl":"10.1007/s10953-024-01416-1","url":null,"abstract":"<div><p>The study aimed to investigate the solubility and thermodynamic properties of ivermectin in two binary solvent mixtures including (1-propanol + water) and (2-propanol + water). The study was conducted over a temperature range of 293.2–313.2 K. Ivermectin solubility was found to increase with temperature in both solvent systems, with higher solubility values observed at elevated temperatures and in mixtures containing 0.8 mass fraction of 1-propanol and 2-propanol. Furthermore, comparative analysis revealed that the solubility of ivermectin was significantly higher in mixtures composed of 1-propanol and water compared to those comprising 2-propanol and water. In order to analyze the experimental solubility data, a variety of linear and nonlinear models was utilized and subsequently their mean relative deviations (<i>MRD</i>%) to the experimental values was compared to assess their effectiveness. Computed <i>MRD</i>% lower than 27% demonstrated promising results in predicting and describing ivermectin solubility in binary mixtures. Additionally, the study calculated apparent thermodynamic parameters, including Gibbs energy, enthalpy, and entropy, using the van’t Hoff and Gibbs equations. Thermodynamic analysis indicates that ivermectin dissolves readily in both mixtures due to a decreased Gibbs free energy, increased entropy, and heat absorption during dissolution.</p></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 1","pages":"92 - 108"},"PeriodicalIF":1.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}