羧酸基疏水天然深共晶溶剂制备的离子液体介导无机共晶凝胶的电化学性能研究

IF 1.3 4区 化学 Q4 CHEMISTRY, PHYSICAL
Arindam Dutta, Debashis Kundu, Surbhi Sharma, Debbie S. Silvester, Tamal Banerjee
{"title":"羧酸基疏水天然深共晶溶剂制备的离子液体介导无机共晶凝胶的电化学性能研究","authors":"Arindam Dutta,&nbsp;Debashis Kundu,&nbsp;Surbhi Sharma,&nbsp;Debbie S. Silvester,&nbsp;Tamal Banerjee","doi":"10.1007/s10953-025-01471-2","DOIUrl":null,"url":null,"abstract":"<div><p>The growing demand for sustainable energy storage technologies drives the development of environment-friendly electrolytes with superior electrochemical performance. Conventional liquid electrolytes face challenges such as leakage and limited portability. Solid or quasi-solid electrolytes like ionogels and eutectogels offer promising alternatives; however, ionogels can be costly due to extensive use of ionic liquids (ILs), and eutectogels often suffer from restricted operating potential window. While eutectogels developed from natural deep eutectic solvents (NADESs) offer more benignity and a wider potential window, they possess low ionic conductivity. This study introduces hybrid eutectogel electrolytes by confining hydrophobic NADESs within a titania (TiO<sub>2</sub>) matrix via a non-aqueous sol–gel process, mediated with 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF<sub>4</sub>]). The goal is to address conductivity limitations observed in earlier NADES-based eutectogels by harnessing the synergistic properties of NADES, IL, and TiO<sub>2</sub>. Electrochemical analyses using cyclic voltammetry and electrochemical impedance spectroscopy with reduced graphene oxide electrodes reveals a wide 4 V potential window, high ionic conductivity (14.53–16.28 mS·cm⁻<sup>1</sup>), and decent specific capacitance (16.23–47.72 F·g⁻<sup>1</sup>). Achieving specific energy up to 106 W·h·kg⁻<sup>1</sup>, these eutectogels show strong potential as electrolytes for high-performance supercapacitors, paving the way for further material optimization.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":666,"journal":{"name":"Journal of Solution Chemistry","volume":"54 9","pages":"1210 - 1225"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Electrochemical Properties of Ionic-Liquid-Mediated Inorganic Eutectogels Derived from Carboxylic-Acid-Based Hydrophobic Natural Deep Eutectic Solvents\",\"authors\":\"Arindam Dutta,&nbsp;Debashis Kundu,&nbsp;Surbhi Sharma,&nbsp;Debbie S. Silvester,&nbsp;Tamal Banerjee\",\"doi\":\"10.1007/s10953-025-01471-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing demand for sustainable energy storage technologies drives the development of environment-friendly electrolytes with superior electrochemical performance. Conventional liquid electrolytes face challenges such as leakage and limited portability. Solid or quasi-solid electrolytes like ionogels and eutectogels offer promising alternatives; however, ionogels can be costly due to extensive use of ionic liquids (ILs), and eutectogels often suffer from restricted operating potential window. While eutectogels developed from natural deep eutectic solvents (NADESs) offer more benignity and a wider potential window, they possess low ionic conductivity. This study introduces hybrid eutectogel electrolytes by confining hydrophobic NADESs within a titania (TiO<sub>2</sub>) matrix via a non-aqueous sol–gel process, mediated with 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF<sub>4</sub>]). The goal is to address conductivity limitations observed in earlier NADES-based eutectogels by harnessing the synergistic properties of NADES, IL, and TiO<sub>2</sub>. Electrochemical analyses using cyclic voltammetry and electrochemical impedance spectroscopy with reduced graphene oxide electrodes reveals a wide 4 V potential window, high ionic conductivity (14.53–16.28 mS·cm⁻<sup>1</sup>), and decent specific capacitance (16.23–47.72 F·g⁻<sup>1</sup>). Achieving specific energy up to 106 W·h·kg⁻<sup>1</sup>, these eutectogels show strong potential as electrolytes for high-performance supercapacitors, paving the way for further material optimization.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":666,\"journal\":{\"name\":\"Journal of Solution Chemistry\",\"volume\":\"54 9\",\"pages\":\"1210 - 1225\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solution Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-025-01471-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solution Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-025-01471-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对可持续储能技术日益增长的需求推动了具有优异电化学性能的环境友好型电解质的发展。传统的液体电解质面临着诸如泄漏和有限的便携性等挑战。固体或准固体电解质,如离子凝胶和共凝胶,提供了有希望的替代品;然而,由于离子液体的广泛使用,离子凝胶价格昂贵,而且共析凝胶的操作电位窗口也受到限制。虽然由天然深共晶溶剂(NADESs)开发的共凝胶具有更大的亲和力和更宽的电位窗口,但它们具有低离子电导率。本研究通过非水溶胶-凝胶过程将疏水性NADESs限制在二氧化钛(TiO2)基质中,并以1-丁基-3-甲基咪唑四氟硼酸盐([BMIM][BF4])为媒介,引入了杂化共聚物电解质。目标是通过利用NADES、IL和TiO2的协同特性来解决早期基于NADES的共凝胶中观察到的导电性限制。使用循环伏安法和电化学阻抗谱对还原氧化石墨烯电极进行电化学分析,发现其具有宽的4 V电位窗口,高离子电导率(14.53-16.28 mS·cm⁻1)和良好的比电容(16.23-47.72 F·g⁻1)。这些共聚凝胶的比能高达106 W·h·kg - 1,显示出作为高性能超级电容器电解质的强大潜力,为进一步优化材料铺平了道路。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Electrochemical Properties of Ionic-Liquid-Mediated Inorganic Eutectogels Derived from Carboxylic-Acid-Based Hydrophobic Natural Deep Eutectic Solvents

The growing demand for sustainable energy storage technologies drives the development of environment-friendly electrolytes with superior electrochemical performance. Conventional liquid electrolytes face challenges such as leakage and limited portability. Solid or quasi-solid electrolytes like ionogels and eutectogels offer promising alternatives; however, ionogels can be costly due to extensive use of ionic liquids (ILs), and eutectogels often suffer from restricted operating potential window. While eutectogels developed from natural deep eutectic solvents (NADESs) offer more benignity and a wider potential window, they possess low ionic conductivity. This study introduces hybrid eutectogel electrolytes by confining hydrophobic NADESs within a titania (TiO2) matrix via a non-aqueous sol–gel process, mediated with 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The goal is to address conductivity limitations observed in earlier NADES-based eutectogels by harnessing the synergistic properties of NADES, IL, and TiO2. Electrochemical analyses using cyclic voltammetry and electrochemical impedance spectroscopy with reduced graphene oxide electrodes reveals a wide 4 V potential window, high ionic conductivity (14.53–16.28 mS·cm⁻1), and decent specific capacitance (16.23–47.72 F·g⁻1). Achieving specific energy up to 106 W·h·kg⁻1, these eutectogels show strong potential as electrolytes for high-performance supercapacitors, paving the way for further material optimization.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solution Chemistry
Journal of Solution Chemistry 化学-物理化学
CiteScore
2.30
自引率
0.00%
发文量
87
审稿时长
3-8 weeks
期刊介绍: Journal of Solution Chemistry offers a forum for research on the physical chemistry of liquid solutions in such fields as physical chemistry, chemical physics, molecular biology, statistical mechanics, biochemistry, and biophysics. The emphasis is on papers in which the solvent plays a dominant rather than incidental role. Featured topics include experimental investigations of the dielectric, spectroscopic, thermodynamic, transport, or relaxation properties of both electrolytes and nonelectrolytes in liquid solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信