Mahmud Iskandar Seth Abdul Rahim, Shamsul Kamaruddin, Nik Intan Nik Ismail, Nik Zakaria Nik Yahya, Nazirah Ahmad
{"title":"Dynamic properties of isotropic natural rubber-based magnetorheological elastomers","authors":"Mahmud Iskandar Seth Abdul Rahim, Shamsul Kamaruddin, Nik Intan Nik Ismail, Nik Zakaria Nik Yahya, Nazirah Ahmad","doi":"10.1007/s42464-024-00242-w","DOIUrl":"10.1007/s42464-024-00242-w","url":null,"abstract":"<div><p>Magnetorheological elastomers (MRE) are one of smart materials comprised of micron-sized iron particles in the elastomeric matrix, which exhibit variable dynamic properties in a changeable manner under the application of an external magnetic field. This paper presents experimental characterisations of static and dynamic properties of natural rubber-based on isotropic MRE with 30 and 60 wt% of carbonyl iron particles (CIPs) using the procedure outlined in the related standards. The static properties of these materials were measured as a function of the magnetic flux density using a servo-hydraulic machine in shear mode. The MRE with the highest magnetorheological (MR) effect was selected for the following dynamic properties with a range of shear strain amplitudes (2.5 to 20%), frequencies (1 to 50 Hz), and magnetic flux densities (0 to 240 mT). The storage modulus and loss modulus were found to increase with increasing frequency and decrease with increasing strain amplitude. Further investigation revealed that the relative MR effect reached its peak at 5% shear strain amplitude and 1 Hz with a value of 14.11%. Therefore, low strain levels must be considered in designing vibration applications using natural rubber (NR)-based MRE. The measured dynamic properties results were used to develop MRE test specifications for automotive products in Malaysia, as well as a possible smart material for vibration and noise control in various engineering applications.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"28 1","pages":"27 - 38"},"PeriodicalIF":1.2,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Growing ZnS nanoparticles on novel expanded perlite-butadiene rubber composite by SILAR method","authors":"Nada Edres, Irada Buniyatzadeh, Solmaz Aliyeva, Goncha Eyvazova, Nurlana Binnetova, Naila Guliyeva, Sevinj Mammadyarova, Rasim Alosmanov","doi":"10.1007/s42464-024-00246-6","DOIUrl":"10.1007/s42464-024-00246-6","url":null,"abstract":"<div><p>The article focuses on synthesising a new nanocomposite incorporating ZnS filler and investigating its structure, optical properties and specific electrical conductivity. In this study, expanded perlite (EP) and butadiene rubber (BR) underwent simultaneous oxidative chlorophosphorylation and subsequent hydrolysis. ZnS nanoparticles were then grown on the crosslinked/ion-exchange composite (EP-PhBR) using the Successive Ionic Layer Adsorption and Reaction (SILAR) method, resulting in the ZnS/EP-PhBR nanocomposite. The structure of the nanocomposite was characterised through UV-Vis spectroscopy and X-ray diffraction analysis. Embedding ZnS nanoparticles in EP-PhBR caused a reduction in the optical band gap from 3.18 eV to 3.045 eV, signifying increased disorder in ZnS nanoparticles due to alterations in the nanocomposite’s intermolecular structure. XRD studies revealed cubic crystal-structured ZnS nanoparticles with an average size of approximately 3 nm in the ZnS/EP-PhBR nanocomposite. The specific electrical conductivity (σ) at ambient temperature demonstrated the enhanced crystallinity of EP-PhBR, attributed to interfacial interactions with ZnS nanoparticles and the developed nanolayers. The ZnS/EP-PhBR nanocomposite exhibited favourable properties, making it a promising material for photocatalysis and solar cell applications.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 3","pages":"299 - 308"},"PeriodicalIF":1.2,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamad Zamir Hadi Ismail, Murnita Mohmad Mahyudin, Aizat Shamin Noran, Adam Malik Ahmad Zambri, Nor Afiqah Maiden, Safiah Atan, Mohd Nasaruddin Mohd Aris
{"title":"Identification and characterisation of causal pathogens of Pestalotiopsis leaf fall disease in Hevea brasiliensis using a detached leaf technique","authors":"Mohamad Zamir Hadi Ismail, Murnita Mohmad Mahyudin, Aizat Shamin Noran, Adam Malik Ahmad Zambri, Nor Afiqah Maiden, Safiah Atan, Mohd Nasaruddin Mohd Aris","doi":"10.1007/s42464-024-00243-9","DOIUrl":"10.1007/s42464-024-00243-9","url":null,"abstract":"<div><p><i>Pestalotiopsis</i> leaf fall disease (PLFD) has emerged as a significant and detrimental foliar disease affecting <i>Hevea brasiliensis</i> in Malaysia since 2017. The disease poses a severe threat to rubber plantations, leading to economic losses and impacting the country’s rubber industry. Understanding the factors contributing to lesion incidence and the potential presence of a fungal complex is crucial for effective disease management. This study aimed to address key objectives, including the identification of primary fungal pathogens responsible for lesion development and examination of the role of co-infections in lesion incidence. To achieve these objectives, five fungal isolates (<i>Neopestalotiopsis surinamensis</i>, <i>Colletotrichum conoides</i>, <i>Lasiodiplodia theobromae</i>, <i>Phyllosticta fallopiae</i> and <i>Letendraea cordylinicola</i>) previously identified through the Internal Transcribe Spacer (ITS) regions were subjected to in vitro artificial inoculation experiments on detached rubber leaves. Various combinations of these fungal isolates were tested to evaluate their interactions as possible causal pathogens of PLFD. Three variables were assessed, viz. type of water source (sterile distilled water and rainwater), presence of leaf wounds, and inoculation techniques (conidial suspensions and mycelial agar plugs). Lesion incidence was evaluated based on sporulating occurrences on the detached leaves, recorded seven days after inoculation. Statistical analysis, including non-parametric Pearson’s chi-square tests revealed that the fungal isolates <i>Lasiodiplodia theobromae</i>, <i>Colletotrichum conoides</i> and <i>Neopestalotiopsis surinamensis</i> were the primary contributors to lesion incidence, accounting for 83%, 69%, and 57% of cases, respectively. The study also revealed that lesion incidence was not significantly influenced by inoculation techniques or type of water source but was greater in wounded leaves compared to unwounded leaves. Co-inoculation experiments demonstrated increased lesion incidence, highlighting the role of co-infections in disease severity. Importantly, this study elucidated a potential fungal complex associated with PLFD and provided insights into its epidemiology. The findings contribute to deeper understanding of the disease, offering valuable guidance for effective disease management strategies in <i>H. brasiliensis</i> cultivation in Malaysia.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 1","pages":"159 - 173"},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shera Mathew, K. M. Malu, Siby Varghese, Parvathy S. Kumar, N. Vaishak
{"title":"Effect of inorganic fillers on natural rubber latex foam vulcanisates","authors":"Shera Mathew, K. M. Malu, Siby Varghese, Parvathy S. Kumar, N. Vaishak","doi":"10.1007/s42464-024-00240-y","DOIUrl":"10.1007/s42464-024-00240-y","url":null,"abstract":"<div><p>The focus of this study is on the evaluation of the effect of different types of inorganic fillers on the different major properties of natural rubber latex (NRL) foam vulcanisates. The mechanical and chemical properties of filled NRL foam were evaluated and compared with unfilled vulcanisate as per BIS standards IS 1741:2019 and IS: 6664 (1992) RA 2004 specification. The different fillers at various loadings selected for this study were marble powder, talc and China clay. From this study, talc was found to impart good mechanical properties such as indentation hardness index, flexing properties, compression set at constant strain and stress and split tear strength. It was also found that the chemical properties such as ageing resistance and water absorption properties for talc-filled foam were found to be equivalent to NRL foam without filler. Amongst the fillers studied talc possesses better mechanical and chemical properties followed by marble powder and China clay. Scanning electron microscope (SEM) image analysis of NRL foam at 500 μm scale with talc is self-explanatory to the above-mentioned facts.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 1","pages":"127 - 136"},"PeriodicalIF":1.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdullah Al-Sehemi, Ahmed Al-Ghamdi, Nikolay Dishovsky, Irena Mihailova, Petrunka Malinova, Nikolay Atanasov, Gabriela Atanasova
{"title":"Possibilities of using pigments with spinel structure as fillers and properties of composites containing them based on the styrene butadiene rubber","authors":"Abdullah Al-Sehemi, Ahmed Al-Ghamdi, Nikolay Dishovsky, Irena Mihailova, Petrunka Malinova, Nikolay Atanasov, Gabriela Atanasova","doi":"10.1007/s42464-024-00235-9","DOIUrl":"10.1007/s42464-024-00235-9","url":null,"abstract":"<div><p>Flexible antennas are placed near or on the human body without having an adverse effect on it. Therefore, they must be comfortable, flexible and not contribute to discomfort. At the same time, they must have a small value of the tangent of the angle of dielectric loss (tan <i>δ</i><sub><i>ε</i></sub>), a minimum absorption of electromagnetic power, the ability to withstand mechanical loads and have a small change in the complex dielectric permittivity in a wide frequency range. The aim of the study is to verify the possibilities of using spinel pigments as fillers in styrene-butadiene rubber composites applicable as substrates and insulating layers in flexible portable antennas for wireless communications. It was found that the filler used has characteristics that ensure good performance of the antenna, combined with an aesthetic appearance. The optimal concentration of the spinel pigment, which determines the best operational characteristics of the antenna, has been established.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 1","pages":"73 - 83"},"PeriodicalIF":1.2,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmad Zulhilmi Nazri, Muhammad Akbar Abdul Ghaffar
{"title":"Response of the clone RRIM 3001 (Hevea brasiliensis) to three ethephon stimulation treatments and the identification of differentially expressed transcription factors for a water-based stimulant","authors":"Ahmad Zulhilmi Nazri, Muhammad Akbar Abdul Ghaffar","doi":"10.1007/s42464-024-00237-7","DOIUrl":"10.1007/s42464-024-00237-7","url":null,"abstract":"<div><p>Ethylene plays a role of gas hormone generated in response to varied stress in plant cells. In <i>Hevea brasiliensis</i>, periodic ethephon stimulation of tapped trees generates a dilution of the latex, a lower Total Solid Content (TSC) and a lower viscosity, resulting in a longer duration of the latex flow and a higher production of the following tappings. It also increases latex regeneration between two subsequent tappings. These mechanisms induce important changes in the laticifer metabolism and in the cellular genetic expression. Ethephon stimulation has become a major tool for tapping management. However, its excessive use can increase the susceptibility of trees to tapping panel dryness (TPD). A newly formulated ethephon water-based stimulant (RRIM HYDROBEST<sup>TM</sup>, or RHB) is studied. A field trial was set with the clone RRIM 3001, comparing 4 stimulant treatments: ns = non-stimulated = control, ET = Ethephon 5%, MTX = MORTEX 5%, and RHB = RRIM HYDROBEST™ 5%. The production per tree was higher for MTX than for ns and ET, with RHB intermediate between both groups. The dry cut length (DCL) percentage of RHB was lower than that of ns, ET and MTX. Concerning the sucrose content of the latex measured in high-yielding and low-yielding periods, for the control ns alone, sucrose content in the low-yielding period was higher than that in the high-yielding period. Concerning the RHB treatment, in comparison with the control, 75 differentially expressed transcription factors were found, with most of them members of the ERF family. These results are discussed.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 1","pages":"103 - 114"},"PeriodicalIF":1.2,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stress analysis of a thick-walled cylinder composed of incompressible hyperelastic materials subjected to internal and/or external pressure: analytical and finite element analysis","authors":"Mounir Methia, Safia Bouzidi, Abdelhakim Benslimane, Makrem Arfaoui, Nourredine Aït Hocine","doi":"10.1007/s42464-024-00239-5","DOIUrl":"10.1007/s42464-024-00239-5","url":null,"abstract":"<div><p>In this work, the mechanical behaviour of a thick-walled cylindrical pressure vessel composed of an incompressible isotropic non-linearly hyper-elastic material subjected to internal and/or external pressure is investigated. An analytical solution is proposed for the general form of the free strain energy density and different models including Neo–Hookean, Mooney–Rivlin, and Yeoh are employed. An analysis was conducted to determine the extension ratio at the inner and outer radii as well as the stress distribution, in different cases, namely the application of internal pressure only, external pressure only, and internal and external pressure applied simultaneously. In addition, various pressure values are applied to account for different levels of deformation. In order to strengthen the analytical solution, a finite element model of the pressurised vessel was constructed. A very good agreement has been found between the analytical predictions and the numerical results, suggesting the accuracy of the analytical solution. The analytical solution can be used for parametric studies (material or geometrical parameters) and the design/optimisation of a thick-walled cylindrical pressure vessel subjected to internal and/or external pressure. Additionally, it obviates the requirement for many finite element simulations, where computational cost is an important parameter.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 1","pages":"115 - 126"},"PeriodicalIF":1.2,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yen Wan Ngeow, Nik Intan Nik Ismail, Dayang Habibah Abang Ismawi Hassim, Siti Salina Sarkawi, Mahmud Iskandar Seth A. Rahim, Kok Chong Yong
{"title":"A comparative evaluation of compression moulded and fused deposition modelling 3D printed thermoplastic polyurethane","authors":"Yen Wan Ngeow, Nik Intan Nik Ismail, Dayang Habibah Abang Ismawi Hassim, Siti Salina Sarkawi, Mahmud Iskandar Seth A. Rahim, Kok Chong Yong","doi":"10.1007/s42464-024-00238-6","DOIUrl":"10.1007/s42464-024-00238-6","url":null,"abstract":"<div><p>Additive manufacturing, also known as 3D printing, is transforming the industry and becoming more common every day due to its considerable time saving and lower costs, compared to the established conventional manufacturing methods. The mechanical strength of 3D printed products is affected by the parameters of the 3D printing process. Thermoplastic Polyurethane (TPU) is a type of elastomer, capable of being used on any fused deposition modelling (FDM) 3D printer. A series of TPU test pieces with different infill density and patterns were produced using a FDM printer. The influence of infill parameters on the 3D part’s mechanical properties has been evaluated. Five patterns with a range of infill densities were compared in this study. The tensile properties of the printed specimens were influenced by the infill density, whereas the infill pattern used in this study has marginal effects. The grid pattern with 100% infill density showed the highest tensile strength, with a value of 4.43 MPa. The results were compared with specimens, which were prepared through conventional compression moulding. The dynamic mechanical thermal analysis (DMTA) and load–deflection analysis (LDA) tests showed that specimens with 100% infill density may not be significantly affected by different infill patterns selected in this study under low strain testing conditions.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 2","pages":"193 - 200"},"PeriodicalIF":1.2,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139910196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Printability of elastomer as a 3D printing material for additive manufacturing","authors":"Archisman Dasgupta, Prasenjit Dutta","doi":"10.1007/s42464-024-00241-x","DOIUrl":"10.1007/s42464-024-00241-x","url":null,"abstract":"<div><p>Additive manufacturing (AM) involves creating prototypes by depositing and solidifying material by the placement of material in <i>X</i>, <i>Y</i>, and <i>Z</i> axes in a 3D space. The emergence of AM using elastomers has allowed the production of complex and customised parts with intricate geometries and modified properties as per specific needs of engineers cum designers. For successful 3D printing (3DP), it is crucial to use a material that is suitable for the specific application and printing process. Elastomers are unique polymers that are resilient, flexible and capable of deforming under stress. Fused deposition modelling, stereolithography and selective laser sintering printing are the most common 3DP techniques for elastomers. The use of elastomers in AM is limited due to technological, material and processing constraints. Despite challenges, elastomers have great potential in AM and can be applied in various industries namely automotive, aerospace, healthcare and consumer goods. However, there is a growing interest in expanding the range of elastomers that can be 3D printed. Researchers are experimenting with different approaches to enhance the printability of elastomers such as modifying material composition, material design, optimising printing parameters, control of chemical composition and 3DP techniques. Recent advancements in the structure, properties and printing techniques of elastomers show wide scope for improving their printability. Several elastomeric materials that can be 3D printed include thermoplastic elastomer, thermoplastic polyurethane, liquid silicone rubber, etc. This review paper aims at providing an overview of the current state of AM of elastomers, including the challenges and limitations. It discusses recent advancements and suggests ways to enhance the printability of elastomers in near future, which can help researchers and industry professionals to explore new and unique AM applications.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 1","pages":"137 - 157"},"PeriodicalIF":1.2,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139910062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roslim Ramli, Siang Yin Lee, Mohd. Aswad Abd. Rahman, Ai Bao Chai, Asrul Mustafa
{"title":"Fabrication and characterization of latex foam shoe insoles made from novel ammonia-free natural rubber latex concentrate","authors":"Roslim Ramli, Siang Yin Lee, Mohd. Aswad Abd. Rahman, Ai Bao Chai, Asrul Mustafa","doi":"10.1007/s42464-024-00236-8","DOIUrl":"10.1007/s42464-024-00236-8","url":null,"abstract":"<div><p>The presence of ammonia as a preservative in natural rubber (NR) latex concentrate induces a variety of problems in the NR latex foam manufacturing process, consequently leading to inconsistency in the quality of the end products. To overcome these issues, a novel ammonia-free NR (AFNR) latex concentrate that uses palm oil-based polymeric surfactants as an alternative preservative has been developed. This study explores the feasibility of using AFNR latex to produce latex foam shoe insoles. In this investigation, the AFNR latex was foamed into extra-high-density (EHD) and high-density (HD) foams using the Dunlop batch foaming process. The study found that HD latex foam is softer than EHD latex foam, with the Shore F hardness of HD latex foam and EHD latex foam being 57 and 77, respectively. The study also discovered that the peak pressure value and rebound resilience properties of HD latex foam shoe insoles, which were fabricated at 7 mm thickness, are 41% and 6% lower than those of EHD latex foam, respectively. Additionally, EHD latex foam and HD latex foam have different morphological characteristics, with EHD latex foam having a thicker cell wall, smaller pore size, and being less porous compared to HD latex foam. Taking these properties into consideration, HD foam could be the ideal choice for shoe insole applications, such as sports shoes.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":"27 1","pages":"85 - 101"},"PeriodicalIF":1.2,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}