2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)最新文献

筛选
英文 中文
A parallel kinematic scanner designed for high-speed atomic force microscopy 一种为高速原子力显微镜设计的平行运动扫描仪
Xianbin He, Liangyu Cui, K. Cai, Yanling Tian, Xianping Liu
{"title":"A parallel kinematic scanner designed for high-speed atomic force microscopy","authors":"Xianbin He, Liangyu Cui, K. Cai, Yanling Tian, Xianping Liu","doi":"10.1109/3M-NANO.2017.8286288","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286288","url":null,"abstract":"Atomic force microscopy (AFM) is a useful tool in nanoscale measurement. However, conventional AFM suffers from slow scan speed, limiting the use for biological detection or nanofabrication, due to the limited bandwidth of AFM components. In which the resonant frequency of the AFM scanner is usually too low to achieve high-speed scanning. In this paper, a parallel kinematic piezoelectric actuator (PZT) AFM scanner is designed to achieve high-speed atomic force microscopy (HS-AFM) scanning. After that, finite element analysis (FEA) is adopted to characterize the scanner. Finally, images of standard gratings obtained at 25 Hz with our home-made AFM system is presented after calibration and motion coupling compensation.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"282 1","pages":"46-49"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86739949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulation of magnetic nanoparticles by optically induced dielectrophoresis 光诱导介质电泳对磁性纳米颗粒的操纵
Ying Wang, Feifei Wang, Tingting Huang, Fenfen Guo, Ying Xie, Zhengxun Song, Jinyun Liu, Zuobin Wang, Yihui Wang
{"title":"Manipulation of magnetic nanoparticles by optically induced dielectrophoresis","authors":"Ying Wang, Feifei Wang, Tingting Huang, Fenfen Guo, Ying Xie, Zhengxun Song, Jinyun Liu, Zuobin Wang, Yihui Wang","doi":"10.1109/3M-NANO.2017.8286334","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286334","url":null,"abstract":"This paper presents a method for the manipulation of magnetic nanoparticles by optically induced dielectrophoresis (ODEP) device that can realize the transportation and convergence of nanoparticles. ODEP can be realized with a sandwich structure of three layers including the photoconductive layer, the liquid layer with the sample and the indium tin oxide electrode (ITO) layer. In this work, magnetic nanoparticles with the diameter of 10–100nm were successfully manipulated by positive dielectrophoresis force. The solution with magnetic nanoparticles on a mica substrate placed in the sandwich structure was dried in the air and imaged by atomic force microscope (AFM). The AFM images showed that the magnetic nanoparticles were converged in the illumination area. This method can be used to manipulate magnetic nanoparticles.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"55 1","pages":"325-328"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83016477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithography-induced wettability changes of silicon 光刻诱导硅的润湿性变化
Jiajing Zhu, Chengjuan Yang, Fujun Wang, Yanling Tian, Xianping Liu
{"title":"Lithography-induced wettability changes of silicon","authors":"Jiajing Zhu, Chengjuan Yang, Fujun Wang, Yanling Tian, Xianping Liu","doi":"10.1109/3M-NANO.2017.8286259","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286259","url":null,"abstract":"In recent years, the fabrication of hydrophobic surface has become a research hotspot. In this paper, three different patterns were fabricated successfully on the silicon wafers by lithography technology and the effects of dimension and interval parameters on surface wettability were the highlights in this study. Due to the different structural features, the overall average of linear pattern's contact angles were less than the overall average of grid pattern's contact angles and dot pattern's contact angles. What's more, the dimension parameters played a more important role than the interval parameters on the surface wettability. The smaller dimension of microstructure obviously preferred to have higher contact angle with better surface hydrophobic performance, especially when the size is less than 100μm. When the dimension of microstructure was 60μm, the contact angle were all larger than 90°, and some of them even reached the super-hydrophobic surface (larger than 150°).","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"139 1","pages":"69-73"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87544717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Design and driving of a 3-DOF electromagnetic direct-drive nanopositioning stage with long stroke 三自由度长行程电磁直驱纳米定位台的设计与驱动
Xixian Mo, Bo Zhang
{"title":"Design and driving of a 3-DOF electromagnetic direct-drive nanopositioning stage with long stroke","authors":"Xixian Mo, Bo Zhang","doi":"10.1109/3M-NANO.2017.8286316","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286316","url":null,"abstract":"In this paper, we present a novel electromagnetic driving scheme for nano-scale positioning stage with three-degree-of-freedom. Three air bearings are used to provide the suspension force for the stage against gravity. The stage has a +-50nm position resolution over a travel range of 50 × 50 mm in the xy plane. We explain the actuating scheme, the design of mechanical system in detail. The hardware-in-loop simulation scheme is adopted to build the control system of the stage. We describe the dynamic model of the stage and design its controller. We provide the test results to demonstrate the precision positioning capabilities of the proposed stage.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"7 1","pages":"236-241"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83330206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A roller support stage with remote center of motion for roll-to-roll printed electronics 用于卷对卷印刷电子产品的具有远程运动中心的辊子支撑台
Shasha Chen, Weihai Chen, Jingmeng Liu, Wenjie Chen
{"title":"A roller support stage with remote center of motion for roll-to-roll printed electronics","authors":"Shasha Chen, Weihai Chen, Jingmeng Liu, Wenjie Chen","doi":"10.1109/3M-NANO.2017.8286260","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286260","url":null,"abstract":"High uniformity of the web tension is of key importance in roll-to-roll printed electronics (R2RPE). A roller support stage with remote center of motion (RCM) is proposed to eliminate the uneven tension which can be transformed into an equivalent force and two equivalent moments. The equivalent force is supported by the rigid structure, then the equivalent moments can be eliminated by adjusting the roller angle, thus the uniformity of the tension can be guaranteed. The stage mainly consists of a high-stiffness spherical air bearing (SAB) and a multi-degree-of-freedom (multi-DOF) compliant mechanism. The roller center and the rotation center of the SAB locate at the same point. Therefore the roller will not produce lateral parasitic movement when the roller angle is changed. Based on the classical beam theory and the pseudo-rigid-body-model (PRBM), the analytical model of the compliant mechanism have been established. Finite element analysis (FEA) is conducted to verify the established model. Both the analytical model and FEA results demonstrate the superior property of the design, which indicates that the proposed mechanism can meet the requirements for the angle adjustment capacity of the roller support stage.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"23 1","pages":"319-324"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84390453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and modeling of a 2-DOF decoupled rotation platform for micro-manipulation 面向微操作的二自由度解耦旋转平台设计与建模
C. Liang, Fujun Wang, Yanling Tian, Dawei Zhang
{"title":"Design and modeling of a 2-DOF decoupled rotation platform for micro-manipulation","authors":"C. Liang, Fujun Wang, Yanling Tian, Dawei Zhang","doi":"10.1109/3M-NANO.2017.8286283","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286283","url":null,"abstract":"In high precision micro-manipulation task, precision angle adjustment is very important, which directly affects the quality of micro-manipulation. In this paper a novel 2-DOF (degree of freedom) rotation platform driven by two piezoelectric (PZT) actuators is designed to realize precision angle adjustment. The rotation platform has compact flexure-based mechanical structure and light weight. The rotation decoupling in X-and Y-axes are realized through the Hook joint. In order to obtain large range rotational angle, bridge-type mechanism is utilized in the 2-DOF rotation platform. An analytical model for rotational angle and input stiffness calculation is established. The influences of key parameters on the rotational angle as well as input stiffness of the rotation platform are analyzed. Finite element analysis (FEA) is conducted to evaluate the analytical model. The results of FEA fit the analytical model well and show the rotation platform exhibits good performance.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"1 1","pages":"7-12"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87762715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on wear resistance of micro-pits texture on turning surface 车削表面微坑织构的耐磨性研究
Qianqian Cai, Yiquan Li, Umair Ayub, Zhanjiang Yu, Jinkai Xu, Huadong Yu
{"title":"Study on wear resistance of micro-pits texture on turning surface","authors":"Qianqian Cai, Yiquan Li, Umair Ayub, Zhanjiang Yu, Jinkai Xu, Huadong Yu","doi":"10.1109/3M-NANO.2017.8286311","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286311","url":null,"abstract":"Cutting tools with surface micro-textures can effectively improve the wear resistance of the tool and improve cutting conditions. The effects of average output power on the morphology and quality of the micro-textures were analyzed by laser processing technology. The micro-pit diameter was 35μm, 30μm, 25μm, 20μm and non-woven tool on the wear resistance of tool was evaluated. The micro-texture performance was evaluated from tool wear length, width and machined surface roughness. The results show that micro-pore diameter and pit depth increase with increase of laser power. The diameter of the micro-pit has a certain influence on the wear resistance of tool. With decrease of the diameter, the surface roughness of Ti6Al4V alloy is decreasing. When the diameter is less than 25μm, the wear resistance of the tool is weakened and the surface roughness of Ti6Al4V alloy is increasing. Micro-pit texture plays an active role in the friction contact state between blade and chip, adhesion resistance, wear resistance, resistance reduction, storage chip and so on.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"64 1","pages":"210-214"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86464493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Orthogonal experiment on the preparation of hydrophobic Ti6Al4V surface by WEDM 电火花切割制备疏水Ti6Al4V表面的正交实验
Jinkai Xu, Xuefeng Li, Jingjing Liu, Huadong Yu
{"title":"Orthogonal experiment on the preparation of hydrophobic Ti6Al4V surface by WEDM","authors":"Jinkai Xu, Xuefeng Li, Jingjing Liu, Huadong Yu","doi":"10.1109/3M-NANO.2017.8286313","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286313","url":null,"abstract":"The surface roughness of the hydrophobic titanium alloy was obtained by using the electric spark wire cutting (Ti6Al4V) technology. The surface of the titanium alloy was measured and characterized by means of ultra depth of field microscopy, scanning electron microscopy and contact angle measurement. The pulse width, the number of power transistors (peak current) and feed speed parameters were optimized by orthogonal experiment, and the influence of these parameters on the wettability of Ti6Al4V surface was discussed. The results show that when the pulse width is 32μs, the number of the power tube is 4, the feed rate is 50 μm/s, the contact angle of Ti6Al4V is preferably 142 degrees.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"70 1","pages":"165-169"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79175160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Computational simulations of solvation force of water under different hydrophobic interactions 不同疏水相互作用下水溶剂化力的计算模拟
Zhongwu Li, Kun Li, Pinyao He, Kabin Lin, Jingjie Sha, Yunfei Chen
{"title":"Computational simulations of solvation force of water under different hydrophobic interactions","authors":"Zhongwu Li, Kun Li, Pinyao He, Kabin Lin, Jingjie Sha, Yunfei Chen","doi":"10.1109/3M-NANO.2017.8286263","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286263","url":null,"abstract":"Surfaces in water would bear hydration repulsion or hydrophobic attraction when separation is small. However, the interaction mechanism of hydrophobic surfaces is still unclear though they are very important when the surfaces are in nanometer separation. With molecular dynamics simulations, the solvation force of water molecules between graphene surfaces of different hydrophobicity is analyzed. Important features of the step-like solvation force oscillatory behavior during the compression within a distance of ∼ 1.5 nm indicate that water is squeezed out layer-by-layer. The hydrophobicity of the graphene surfaces is shown to be an important parameter that influences the solvation force of water molecules. We find that the solvation force decreases when the hydrophobicity of the graphene surfaces increases. Detailed analysis of the water density distributions and the water molecule orientation between graphene surfaces show that changing hydrophobicity would influence the water structure. As the graphene surface becomes more hydrophobic, the water molecules become less ordered and the concentration will also decrease to some extent, which can account for the attenuation of the solvation force.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"81 1","pages":"146-150"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79362259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel nanokaolinite photocatalyst for degradation of P-nitrophenol 一种新型纳米高岭石光催化剂降解对硝基苯酚
S. El-Sheikh, A. Shawky, Sabrin M. Abdo, Thanaa I. El-Dosoqy, Mohamed Nageeb Rashad
{"title":"A novel nanokaolinite photocatalyst for degradation of P-nitrophenol","authors":"S. El-Sheikh, A. Shawky, Sabrin M. Abdo, Thanaa I. El-Dosoqy, Mohamed Nageeb Rashad","doi":"10.1109/3M-NANO.2017.8286281","DOIUrl":"https://doi.org/10.1109/3M-NANO.2017.8286281","url":null,"abstract":"Nanokaolinite photocatalyst was successfully prepared from bulk kaolinite by using simple intercalation-delamination method. The obtained nanokaolinite photocatalysts have been characterized by X-ray diffraction (XRD), FTIR analysis, transmission electron microscope (TEM), and UV-VIS diffuse reflectance spectroscopy (DRS). The XRD revealed that the layers of bulk kaolinite were exfoliated to form nanokaolinite with crystallite size ∼26–32 nm. FTIR spectra showed the presence of nitrogen species between nanokaolinite layers, which lead to decrease of band gap of as-prepared samples as estimated from DRS. The photocatalytic degradation of P-Nitrophenol (PNP) was investigated using the as-prepared nanokaolinite photocatalysts under UV irradiation. The optimum nanokaolinite sample using urea as intercalating agent shows a complete photodegradation of PNP within 30 minutes. This novel nanokaolinite photocatalyst represents an extraordinary alternate for oxide-based photocatalysts.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"36 1","pages":"367-370"},"PeriodicalIF":0.0,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81449168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信