Computational simulations of solvation force of water under different hydrophobic interactions

Zhongwu Li, Kun Li, Pinyao He, Kabin Lin, Jingjie Sha, Yunfei Chen
{"title":"Computational simulations of solvation force of water under different hydrophobic interactions","authors":"Zhongwu Li, Kun Li, Pinyao He, Kabin Lin, Jingjie Sha, Yunfei Chen","doi":"10.1109/3M-NANO.2017.8286263","DOIUrl":null,"url":null,"abstract":"Surfaces in water would bear hydration repulsion or hydrophobic attraction when separation is small. However, the interaction mechanism of hydrophobic surfaces is still unclear though they are very important when the surfaces are in nanometer separation. With molecular dynamics simulations, the solvation force of water molecules between graphene surfaces of different hydrophobicity is analyzed. Important features of the step-like solvation force oscillatory behavior during the compression within a distance of ∼ 1.5 nm indicate that water is squeezed out layer-by-layer. The hydrophobicity of the graphene surfaces is shown to be an important parameter that influences the solvation force of water molecules. We find that the solvation force decreases when the hydrophobicity of the graphene surfaces increases. Detailed analysis of the water density distributions and the water molecule orientation between graphene surfaces show that changing hydrophobicity would influence the water structure. As the graphene surface becomes more hydrophobic, the water molecules become less ordered and the concentration will also decrease to some extent, which can account for the attenuation of the solvation force.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"81 1","pages":"146-150"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2017.8286263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surfaces in water would bear hydration repulsion or hydrophobic attraction when separation is small. However, the interaction mechanism of hydrophobic surfaces is still unclear though they are very important when the surfaces are in nanometer separation. With molecular dynamics simulations, the solvation force of water molecules between graphene surfaces of different hydrophobicity is analyzed. Important features of the step-like solvation force oscillatory behavior during the compression within a distance of ∼ 1.5 nm indicate that water is squeezed out layer-by-layer. The hydrophobicity of the graphene surfaces is shown to be an important parameter that influences the solvation force of water molecules. We find that the solvation force decreases when the hydrophobicity of the graphene surfaces increases. Detailed analysis of the water density distributions and the water molecule orientation between graphene surfaces show that changing hydrophobicity would influence the water structure. As the graphene surface becomes more hydrophobic, the water molecules become less ordered and the concentration will also decrease to some extent, which can account for the attenuation of the solvation force.
不同疏水相互作用下水溶剂化力的计算模拟
当分离很小时,水中的表面会受到水合排斥或疏水吸引。疏水表面在纳米分离中起着重要作用,但其相互作用机理尚不清楚。通过分子动力学模拟,分析了水分子在不同疏水性石墨烯表面之间的溶剂化力。在约1.5 nm的压缩距离内,阶梯状溶剂化力振荡行为的重要特征表明水被逐层挤出。石墨烯表面的疏水性是影响水分子溶剂化力的重要参数。我们发现,随着石墨烯表面疏水性的增加,溶剂化力减小。对石墨烯表面水密度分布和水分子取向的详细分析表明,改变疏水性会影响水的结构。随着石墨烯表面的疏水性增强,水分子的有序度降低,浓度也会在一定程度上降低,这可以解释溶剂化力的衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信