A parallel kinematic scanner designed for high-speed atomic force microscopy

Xianbin He, Liangyu Cui, K. Cai, Yanling Tian, Xianping Liu
{"title":"A parallel kinematic scanner designed for high-speed atomic force microscopy","authors":"Xianbin He, Liangyu Cui, K. Cai, Yanling Tian, Xianping Liu","doi":"10.1109/3M-NANO.2017.8286288","DOIUrl":null,"url":null,"abstract":"Atomic force microscopy (AFM) is a useful tool in nanoscale measurement. However, conventional AFM suffers from slow scan speed, limiting the use for biological detection or nanofabrication, due to the limited bandwidth of AFM components. In which the resonant frequency of the AFM scanner is usually too low to achieve high-speed scanning. In this paper, a parallel kinematic piezoelectric actuator (PZT) AFM scanner is designed to achieve high-speed atomic force microscopy (HS-AFM) scanning. After that, finite element analysis (FEA) is adopted to characterize the scanner. Finally, images of standard gratings obtained at 25 Hz with our home-made AFM system is presented after calibration and motion coupling compensation.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"282 1","pages":"46-49"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2017.8286288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic force microscopy (AFM) is a useful tool in nanoscale measurement. However, conventional AFM suffers from slow scan speed, limiting the use for biological detection or nanofabrication, due to the limited bandwidth of AFM components. In which the resonant frequency of the AFM scanner is usually too low to achieve high-speed scanning. In this paper, a parallel kinematic piezoelectric actuator (PZT) AFM scanner is designed to achieve high-speed atomic force microscopy (HS-AFM) scanning. After that, finite element analysis (FEA) is adopted to characterize the scanner. Finally, images of standard gratings obtained at 25 Hz with our home-made AFM system is presented after calibration and motion coupling compensation.
一种为高速原子力显微镜设计的平行运动扫描仪
原子力显微镜(AFM)是纳米尺度测量的一种有用工具。然而,由于AFM组件的带宽有限,传统AFM的扫描速度较慢,限制了其在生物检测或纳米制造中的应用。其中原子力显微镜扫描仪的谐振频率通常太低,无法实现高速扫描。为了实现原子力显微镜(HS-AFM)的高速扫描,设计了一种并联运动压电致动器(PZT) AFM扫描仪。然后,采用有限元分析(FEA)对扫描仪进行表征。最后给出了国产AFM系统经标定和运动耦合补偿后在25 Hz下得到的标准光栅图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信