Franklin C. Kenechukwu, Mumuni A. Momoh, Petra O. Nnamani, Chukwuebuka E. Umeyor, Emmanuel M. Uronnachi, Marcos L. Dias, Emmanuel C. Ibezim, Anthony A. Attama
{"title":"Dual-Responsive Micellar Microgels Matrixed with Surface-Engineered Lipids: a New Approach for Controlled Vaginal Drug Delivery","authors":"Franklin C. Kenechukwu, Mumuni A. Momoh, Petra O. Nnamani, Chukwuebuka E. Umeyor, Emmanuel M. Uronnachi, Marcos L. Dias, Emmanuel C. Ibezim, Anthony A. Attama","doi":"10.1007/s12247-021-09546-5","DOIUrl":"10.1007/s12247-021-09546-5","url":null,"abstract":"<div><h3>Purpose</h3><p>This study investigated surface-modified dual-responsive (bio-responsive and thermo-sensitive) micellar microgels as a novel vaginal drug delivery system (VDDS) for enhanced administration and prolonged localized efficacy.</p><h3>Methods</h3><p>Lipid matrices (LMs) consisting of Softisan® 154 and super-refined sunseed oil with or without PEG-4000 were prepared by fusion, loaded with a model topical vaginal drug (miconazole nitrate, MN), characterized and used to formulate MN-loaded surface-modified solid lipid microparticles (SLMs) by melt-homogenization. Surface-modified SLMs were characterized, lyophilized, and used to prepare surface-modified mucoadhesive and thermosensitive microgels (MTMs) employing three bioadhesive agents—hydroxypropylcellulose (HPC), Carbopol® 71G-NF or Polycarbophil®, each alongside two thermosensitive polymers (Kolliphor® P407 and Kolliphor® P188). The MTMs were characterized using phase transition temperature (PTT) and gelation time and evaluated for physicochemical performance, drug dissolution in simulated vaginal fluid (SVF, pH = 4.2) and stability. Antifungal efficacy of optimized (Kolliphor + HPC-based) microgels was evaluated against <i>Candida albicans</i> and compared with control.</p><h3>Results</h3><p>Solid-state characterizations confirmed amorphicity of LMs and MN-loaded LMs and stability of MN in the formulations. Viscoelastic MTMs with high drug content, PTT above room temperature, acceptable gelation times (110.00 ± 2.50 to 130.00 ± 7.80 s), and pH values suitable for VDD were obtained. Furthermore, optimized MTMs gave significantly (<i>p</i> < 0.05) greater prolonged drug release in SVF and higher anticandidal activity than commercial formulation (Daktarin®) and MN polymeric-hydrogel.</p><h3>Conclusion</h3><p>Dual-responsive micellar microgels represent a promising nonconventional formulation for prolonged localized VDD of MN.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 3","pages":"821 - 839"},"PeriodicalIF":2.6,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09546-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4426668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Rahamathulla, Umme Hani, Ali Alqahtani, Gangadharappa. H.V, Yasmin Begum M, Mohammed Jafar, Riyaz Ali M. Osmani, Kumarappan Chidambaram, Afrasim Moin, S. J. Shankar
{"title":"23 Factorial Design and Optimization of Effervescent Floating Matrix Tablet of Neratinib","authors":"Mohamed Rahamathulla, Umme Hani, Ali Alqahtani, Gangadharappa. H.V, Yasmin Begum M, Mohammed Jafar, Riyaz Ali M. Osmani, Kumarappan Chidambaram, Afrasim Moin, S. J. Shankar","doi":"10.1007/s12247-021-09563-4","DOIUrl":"10.1007/s12247-021-09563-4","url":null,"abstract":"<div><h3>Purpose</h3><p>The main objective of the research was to formulate an effervescent floating matrix tablet (EFMT) of a potential anticancer drug neratinib employed in breast cancer therapy. The drug shows poor aqueous solubility at higher pH leading to reduce therapeutic efficacy, thereby resulting in poor bioavailability. Hence, an EFMT is designed to extend the gastric residence time (GRT) of drugs, which can remain several hours in the gastric region and enhance bioavailability. Further 2<sup>3</sup> factorial design employed.</p><h3>Methods</h3><p>The EFMT of neratinib are prepared by direct compression using hydroxyl propyl methylcellulose, Carbopol 940, microcrystalline cellulose, sodium bicarbonate, talc, and lactose. Polymer concentrations were selected as independent variables, whereas hardness, percentage swelling, floating, and percentage drug release were the dependent variables. Pre- and post-compression measurements, swelling studies, in vitro buoyancy, FTIR, scanning electron microscopy (SEM), in vitro release, kinetic, and mechanism of drug release studies have been characterized for preparing floating matrix tablets</p><h3>Results</h3><p>The results showed that pre-and post-compression parameters are within the limit of USP. The buoyancy lag time and total buoyancy time are less than 2 min and > 12 h, respectively, with good swelling characteristics. Fourier transform infrared (FTIR) spectrum showed that no interaction was found between drug and polymers. The optimized formulation (F9) showed 100% drug release at 8 h, which shows a Fickian diffusion.</p><h3>Conclusion</h3><p>The developed novel neratinib floating matrix tablet could enhance the solubility and residence time of neratinib at upper GIT because of the combined effect of the polymers.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 4","pages":"1451 - 1462"},"PeriodicalIF":2.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09563-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4037413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations","authors":"Alok Ranjan, Prateek K. Jha","doi":"10.1007/s12247-021-09565-2","DOIUrl":"10.1007/s12247-021-09565-2","url":null,"abstract":"<div><p>Bioavailability of oral drug formulations is strongly dependent on the composition of the gastric and intestinal fluids and hydrodynamic conditions in the gastrointestinal tract. These affect the dissolution behavior of oral formulations and their subsequent absorption to the bloodstream. A detailed characterization of all these factors is almost impossible in an in vivo setting, which necessitates the use of in vitro experiments. However, the drug release/drug solubility information in the media representing the gastrointestinal tract obtained in an in vitro study is typically not directly determined in an in vivo experiment. Instead, it is more convenient to determine in vivo the drug concentration in plasma. In vitro–in vivo correlation (IVIVC) typically refers to mathematical relationships between in vitro dissolution behavior and in vivo drug concentration in plasma. IVIVC may be improved by approaches that better mimic in vivo conditions in an in vitro setting. These include mimicking of drug absorption and the composition and hydrodynamics of the release medium. Artificial gastrointestinal (GI) systems are designed to meet this objective. In this review, we discuss our current understanding of the IVIVC and the experimental approaches to improve the IVIVC. Some ex vivo approaches also fall within the scope of this review.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 3","pages":"1011 - 1026"},"PeriodicalIF":2.6,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09565-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5097254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: The World Coming Out of Its Shell","authors":"Stephen Scypinski","doi":"10.1007/s12247-021-09564-3","DOIUrl":"10.1007/s12247-021-09564-3","url":null,"abstract":"","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"16 2","pages":"197 - 197"},"PeriodicalIF":2.6,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09564-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4977321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangyu Wang, Lin Wang, Xiaoying Zheng, Qiang Zheng
{"title":"The Reform of the Orphan Drug Assessment System in China","authors":"Xiangyu Wang, Lin Wang, Xiaoying Zheng, Qiang Zheng","doi":"10.1007/s12247-021-09560-7","DOIUrl":"10.1007/s12247-021-09560-7","url":null,"abstract":"<div><p>This perspective article provides historical background and current considerations of the regulation of rare diseases and orphan drugs in China, presenting the ongoing reform of the orphan drug assessment system in the context of a maze of seemingly convoluted government agencies and regulatory policies that are unique to the fast developing China.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 3","pages":"1062 - 1068"},"PeriodicalIF":2.6,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09560-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4832792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bably Khatun, Munmi Majumder, R. Mukhopadhyay, Rafika Yasmin, Robin Doley, T. K. Maji
{"title":"Effect of Curcumin-Hydroxypropyl-(beta)-Cyclodextrin Complex and the Complex Loaded Gelatin Carrageenan Microparticles on the Various Chemical and Biological Properties","authors":"Bably Khatun, Munmi Majumder, R. Mukhopadhyay, Rafika Yasmin, Robin Doley, T. K. Maji","doi":"10.1007/s12247-021-09559-0","DOIUrl":"10.1007/s12247-021-09559-0","url":null,"abstract":"<p>Curcumin was modified with 2-hydroxypropyl-<span>(beta)</span>-cyclodextrin (HP<span>(beta)</span>CD) to enhance its bioavailability. The modified curcumin was loaded into gelatin-carrageenan microparticles to control the drug release behavior. The different analytical techniques like Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) indicated the formation of the samples. The solubility of the modified curcumin was checked visibly and by using UV-VIS spectroscopy & optical microscopy as well. The effect of surfactant on process yield, drug loading & encapsulation efficiency, swelling and drug release from the microparticles was checked. The samples exhibited more swelling and hence drug release was more in basic compared to acidic medium and the percentage increased with increase in time. The modified curcumin, on examining in both breast and lung cancer cell lines, manifested better anticancer activity compared to curcumin as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, clonogenic assay and apoptosis assay. However, the microparticles didn’t reveal better anticancer activities compared to curcumin and modified curcumin. Further, all the prepared samples were found to be non-toxic to human peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs).</p>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 3","pages":"806 - 820"},"PeriodicalIF":2.6,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09559-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4761814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Push-Pull Osmotic Pumps Using Crosslinked Hard Gelatin Capsule as a Structural Assembly for Delivery of Drugs with Different Water Solubilities","authors":"Chaowalit Monton, Poj Kulvanich","doi":"10.1007/s12247-021-09562-5","DOIUrl":"10.1007/s12247-021-09562-5","url":null,"abstract":"<div><h3>Objective</h3><p>The aim of this work was to prepare push-pull osmotic pump capsules using crosslinked hard gelatin capsules as a structural assembly for delivery of four model drugs with different water solubilities including diltiazem hydrochloride, propranolol hydrochloride, ambroxol hydrochloride, and paracetamol.</p><h3>Methods</h3><p>A hard gelatin capsule was crosslinked in formaldehyde vapor for 12 h. Then, a push-pull osmotic pump capsule was prepared, and formulation factors were investigated, i.e., the amount and solubility of model drugs, the amount of polyethylene oxide in pull layer, and size of the capsule. Drug release was evaluated to clarify the release characteristic in several release mediums.</p><h3>Results</h3><p>Results showed that drug release was independent of drug solubility, drug amount, and capsule size. Almost all of the drug release approached Higuchi’s release model. However, ambroxol hydrochloride could not deliver via this device because of its rather high-density drug particle. Reduction of the polyethylene oxide amount resulted in less drug release. Increasing osmolality of the medium reduced drug release. Drug release studies using a medium with digestive enzymes did not alter drug release compared to medium without enzymes. Push-pull osmotic pump capsules prepared from stored crosslinked hard gelatin capsule shells provided reproducible drug release characteristic.</p><h3>Conclusion</h3><p>This developed push-pull osmotic pump capsule is an alternative osmotic pump device for delivery of drugs with different water solubilities.</p><h3>Graphical Abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 3","pages":"791 - 805"},"PeriodicalIF":2.6,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09562-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4625148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Producing High-Dose Liqui-Tablet (Ketoprofen 100 mg) for Enhanced Drug Release Using Novel Liqui-Mass Technology","authors":"Matthew Lam, Ali Nokhodchi","doi":"10.1007/s12247-021-09561-6","DOIUrl":"10.1007/s12247-021-09561-6","url":null,"abstract":"<div><h3>Purpose</h3><p>Liqui-Tablet is a dosage form derived from Liqui-Mass technology. It has proven to be a promising approach to improve drug dissolution rate of poorly water-soluble drugs. So far, Liqui-Tablet is feasible for low-dose drugs. In this study, an attempt was made to produce high-dose Liqui-Tablet, whilst maintaining ideal physicochemical properties for ease of manufacturing.</p><h3>Methods</h3><p>Liqui-Tablets containing 100 mg of ketoprofen were produced using various liquid vehicles including PEG 200, Span 80, Kolliphor EL, PG, and Tween 85. Investigations that were carried out included saturation solubility test, dissolution test, tomographic study, and typical quality control tests for assessing flowability, particle size distribution, friability, and tablet hardness.</p><h3>Results</h3><p>The weight of these Liqui-Tablets was acceptable for swallowing (483.8 mg), and the saturation solubility test showed PEG 200 to be the most suitable liquid vehicle (493 mg/mL). Tests investigating physicochemical properties such as flowability, particle size distribution, friability, and tablet hardness have shown no issue concerning quality control and manufacturability. The drug release test of the best formulation has shown extremely rapid drug release at pH 7.4 (100% after 5 min). At pH 1.2 the drug release was reasonable considering the formulation was yet to be optimized.</p><h3>Conclusion</h3><p>Despite the high amount of API and liquid vehicle, it is possible to produce a high-dose dosage form with acceptable size and weight for swallowing using the novel Liqui-Mass technology. This has the potential to diversify the technology by removing the restriction of high dose drug that has been seen in liquisolid technology.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 3","pages":"778 - 790"},"PeriodicalIF":2.6,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09561-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4350471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Author Correction: Green Approach Towards Synthesis and Characterization of GMO/Chitosan Nanoparticles for In Vitro Release of Quercetin: Isolated from Peels of Pomegranate Fruit","authors":"Poournima Patil, Suresh Killedar","doi":"10.1007/s12247-021-09558-1","DOIUrl":"10.1007/s12247-021-09558-1","url":null,"abstract":"","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 3","pages":"1070 - 1071"},"PeriodicalIF":2.6,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09558-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4997621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green Approach Towards Synthesis and Characterization of GMO/Chitosan Nanoparticles for In Vitro Release of Quercetin: Isolated from Peels of Pomegranate Fruit","authors":"Poournima Patil, Suresh Killedar","doi":"10.1007/s12247-021-09552-7","DOIUrl":"10.1007/s12247-021-09552-7","url":null,"abstract":"<p>In the present work, we focused on extracting, separating, formulating, and, finally, characterizing quercetin. Chitosan/GMO nanoparticles were investigated to controlled release for targeting colonic region. Quercetin is an active biomolecule isolated from peels of pomegranate fruit, separated by different chromatographic techniques, and formulated into nanoformulation to bring it to increase its aqueous solubility. Nanoparticles were prepared by using chitosan, glyceryl monooleate (GMO), and poloxamer 407 using probe sonicator and high-pressure homogenization method. Characterization of nanoparticles was carried out by particle size, zeta potential, differential scanning colorimetry (DSC), X-ray diffraction (XRD), scanning electron microscope (SEM), entrapment efficiency, loading content, in vitro release, and stability study. They showed approximately 78.82% encapsulation with an average size of 145.5 ± 0.66 nm and zeta potential + 14.7 mV. The cumulative in vitro drug release up to 24 h at 77.16% was achieved suggesting towards efficacy of green synthesized chitosan nanoparticles for colonic delivery applications. From all our findings, it can be concluded that work will facilitate the extraction, design, and fabrication of nanoparticles for the protection and sustained release of quercetin biomolecule, particularly to the colonic region. The release performance of chitosan/GMO nanoparticles loaded with quercetin at different pH conditions was greatly affected by the materials used in the preparation, which allows maximum release at colonic pH. Hence, it is a unique approach for colonic delivery of drugs having appropriate site specificity and feasibility and controlled release of biomolecule quercetin.</p>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"17 3","pages":"764 - 777"},"PeriodicalIF":2.6,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12247-021-09552-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4596961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}