{"title":"Representing and Learning High Dimensional Data with the Optimal Transport Map from a Probabilistic Viewpoint","authors":"Serim Park, Matthew Thorpe","doi":"10.1109/CVPR.2018.00820","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00820","url":null,"abstract":"In this paper, we propose a generative model in the space of diffeomorphic deformation maps. More precisely, we utilize the Kantarovich-Wasserstein metric and accompanying geometry to represent an image as a deformation from templates. Moreover, we incorporate a probabilistic viewpoint by assuming that each image is locally generated from a reference image. We capture the local structure by modelling the tangent planes at reference images. Once basis vectors for each tangent plane are learned via probabilistic PCA, we can sample a local coordinate, that can be inverted back to image space exactly. With experiments using 4 different datasets, we show that the generative tangent plane model in the optimal transport (OT) manifold can be learned with small numbers of images and can be used to create infinitely many 'unseen' images. In addition, the Bayesian classification accompanied with the probabilist modeling of the tangent planes shows improved accuracy over that done in the image space. Combining the results of our experiments supports our claim that certain datasets can be better represented with the Kantarovich-Wasserstein metric. We envision that the proposed method could be a practical solution to learning and representing data that is generated with templates in situatons where only limited numbers of data points are available.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"122 1","pages":"7864-7872"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73107147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yancheng Bai, Yongqiang Zhang, M. Ding, Bernard Ghanem
{"title":"Finding Tiny Faces in the Wild with Generative Adversarial Network","authors":"Yancheng Bai, Yongqiang Zhang, M. Ding, Bernard Ghanem","doi":"10.1109/CVPR.2018.00010","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00010","url":null,"abstract":"Face detection techniques have been developed for decades, and one of remaining open challenges is detecting small faces in unconstrained conditions. The reason is that tiny faces are often lacking detailed information and blurring. In this paper, we proposed an algorithm to directly generate a clear high-resolution face from a blurry small one by adopting a generative adversarial network (GAN). Toward this end, the basic GAN formulation achieves it by super-resolving and refining sequentially (e.g. SR-GAN and cycle-GAN). However, we design a novel network to address the problem of super-resolving and refining jointly. We also introduce new training losses to guide the generator network to recover fine details and to promote the discriminator network to distinguish real vs. fake and face vs. non-face simultaneously. Extensive experiments on the challenging dataset WIDER FACE demonstrate the effectiveness of our proposed method in restoring a clear high-resolution face from a blurry small one, and show that the detection performance outperforms other state-of-the-art methods.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"10 1","pages":"21-30"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75489037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single Image Dehazing via Conditional Generative Adversarial Network","authors":"Runde Li, Jin-shan Pan, Zechao Li, Jinhui Tang","doi":"10.1109/CVPR.2018.00856","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00856","url":null,"abstract":"In this paper, we present an algorithm to directly restore a clear image from a hazy image. This problem is highly ill-posed and most existing algorithms often use hand-crafted features, e.g., dark channel, color disparity, maximum contrast, to estimate transmission maps and then atmospheric lights. In contrast, we solve this problem based on a conditional generative adversarial network (cGAN), where the clear image is estimated by an end-to-end trainable neural network. Different from the generative network in basic cGAN, we propose an encoder and decoder architecture so that it can generate better results. To generate realistic clear images, we further modify the basic cGAN formulation by introducing the VGG features and an L1-regularized gradient prior. We also synthesize a hazy dataset including indoor and outdoor scenes to train and evaluate the proposed algorithm. Extensive experimental results demonstrate that the proposed method performs favorably against the state-of-the-art methods on both synthetic dataset and real world hazy images.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"6 1","pages":"8202-8211"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75542708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D-RCNN: Instance-Level 3D Object Reconstruction via Render-and-Compare","authors":"Abhijit Kundu, Yin Li, James M. Rehg","doi":"10.1109/CVPR.2018.00375","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00375","url":null,"abstract":"We present a fast inverse-graphics framework for instance-level 3D scene understanding. We train a deep convolutional network that learns to map image regions to the full 3D shape and pose of all object instances in the image. Our method produces a compact 3D representation of the scene, which can be readily used for applications like autonomous driving. Many traditional 2D vision outputs, like instance segmentations and depth-maps, can be obtained by simply rendering our output 3D scene model. We exploit class-specific shape priors by learning a low dimensional shape-space from collections of CAD models. We present novel representations of shape and pose, that strive towards better 3D equivariance and generalization. In order to exploit rich supervisory signals in the form of 2D annotations like segmentation, we propose a differentiable Render-and-Compare loss that allows 3D shape and pose to be learned with 2D supervision. We evaluate our method on the challenging real-world datasets of Pascal3D+ and KITTI, where we achieve state-of-the-art results.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"22 1","pages":"3559-3568"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75720749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federico Camposeco, Andrea Cohen, M. Pollefeys, Torsten Sattler
{"title":"Hybrid Camera Pose Estimation","authors":"Federico Camposeco, Andrea Cohen, M. Pollefeys, Torsten Sattler","doi":"10.1109/CVPR.2018.00022","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00022","url":null,"abstract":"In this paper, we aim to solve the pose estimation problem of calibrated pinhole and generalized cameras w.r.t. a Structure-from-Motion (SfM) model by leveraging both 2D-3D correspondences as well as 2D-2D correspondences. Traditional approaches either focus on the use of 2D-3D matches, known as structure-based pose estimation or solely on 2D-2D matches (structure-less pose estimation). Absolute pose approaches are limited in their performance by the quality of the 3D point triangulations as well as the completeness of the 3D model. Relative pose approaches, on the other hand, while being more accurate, also tend to be far more computationally costly and often return dozens of possible solutions. This work aims to bridge the gap between these two paradigms. We propose a new RANSAC-based approach that automatically chooses the best type of solver to use at each iteration in a data-driven way. The solvers chosen by our RANSAC can range from pure structure-based or structure-less solvers, to any possible combination of hybrid solvers (i.e. using both types of matches) in between. A number of these new hybrid minimal solvers are also presented in this paper. Both synthetic and real data experiments show our approach to be as accurate as structure-less approaches, while staying close to the efficiency of structure-based methods.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"16 2 1","pages":"136-144"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78023021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HashGAN: Deep Learning to Hash with Pair Conditional Wasserstein GAN","authors":"Yue Cao, Bin Liu, Mingsheng Long, Jianmin Wang","doi":"10.1109/CVPR.2018.00140","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00140","url":null,"abstract":"Deep learning to hash improves image retrieval performance by end-to-end representation learning and hash coding from training data with pairwise similarity information. Subject to the scarcity of similarity information that is often expensive to collect for many application domains, existing deep learning to hash methods may overfit the training data and result in substantial loss of retrieval quality. This paper presents HashGAN, a novel architecture for deep learning to hash, which learns compact binary hash codes from both real images and diverse images synthesized by generative models. The main idea is to augment the training data with nearly real images synthesized from a new Pair Conditional Wasserstein GAN (PC-WGAN) conditioned on the pairwise similarity information. Extensive experiments demonstrate that HashGAN can generate high-quality binary hash codes and yield state-of-the-art image retrieval performance on three benchmarks, NUS-WIDE, CIFAR-10, and MS-COCO.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"24 1","pages":"1287-1296"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80833245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Prior-Less Method for Multi-face Tracking in Unconstrained Videos","authors":"Chung-Ching Lin, Ying Hung","doi":"10.1109/CVPR.2018.00063","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00063","url":null,"abstract":"This paper presents a prior-less method for tracking and clustering an unknown number of human faces and maintaining their individual identities in unconstrained videos. The key challenge is to accurately track faces with partial occlusion and drastic appearance changes in multiple shots resulting from significant variations of makeup, facial expression, head pose and illumination. To address this challenge, we propose a new multi-face tracking and re-identification algorithm, which provides high accuracy in face association in the entire video with automatic cluster number generation, and is robust to outliers. We develop a co-occurrence model of multiple body parts to seamlessly create face tracklets, and recursively link tracklets to construct a graph for extracting clusters. A Gaussian Process model is introduced to compensate the deep feature insufficiency, and is further used to refine the linking results. The advantages of the proposed algorithm are demonstrated using a variety of challenging music videos and newly introduced body-worn camera videos. The proposed method obtains significant improvements over the state of the art [51], while relying less on handling video-specific prior information to achieve high performance.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"80 1","pages":"538-547"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80880656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HSA-RNN: Hierarchical Structure-Adaptive RNN for Video Summarization","authors":"Bin Zhao, Xuelong Li, Xiaoqiang Lu","doi":"10.1109/CVPR.2018.00773","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00773","url":null,"abstract":"Although video summarization has achieved great success in recent years, few approaches have realized the influence of video structure on the summarization results. As we know, the video data follow a hierarchical structure, i.e., a video is composed of shots, and a shot is composed of several frames. Generally, shots provide the activity-level information for people to understand the video content. While few existing summarization approaches pay attention to the shot segmentation procedure. They generate shots by some trivial strategies, such as fixed length segmentation, which may destroy the underlying hierarchical structure of video data and further reduce the quality of generated summaries. To address this problem, we propose a structure-adaptive video summarization approach that integrates shot segmentation and video summarization into a Hierarchical Structure-Adaptive RNN, denoted as HSA-RNN. We evaluate the proposed approach on four popular datasets, i.e., SumMe, TVsum, CoSum and VTW. The experimental results have demonstrated the effectiveness of HSA-RNN in the video summarization task.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"11 1","pages":"7405-7414"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84164123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fine-Grained Video Captioning for Sports Narrative","authors":"Huanyu Yu, Shuo Cheng, Bingbing Ni, Minsi Wang, Jian Zhang, Xiaokang Yang","doi":"10.1109/CVPR.2018.00629","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00629","url":null,"abstract":"Despite recent emergence of video caption methods, how to generate fine-grained video descriptions (i.e., long and detailed commentary about individual movements of multiple subjects as well as their frequent interactions) is far from being solved, which however has great applications such as automatic sports narrative. To this end, this work makes the following contributions. First, to facilitate this novel research of fine-grained video caption, we collected a novel dataset called Fine-grained Sports Narrative dataset (FSN) that contains 2K sports videos with ground-truth narratives from YouTube.com. Second, we develop a novel performance evaluation metric named Fine-grained Captioning Evaluation (FCE) to cope with this novel task. Considered as an extension of the widely used METEOR, it measures not only the linguistic performance but also whether the action details and their temporal orders are correctly described. Third, we propose a new framework for fine-grained sports narrative task. This network features three branches: 1) a spatio-temporal entity localization and role discovering sub-network; 2) a fine-grained action modeling sub-network for local skeleton motion description; and 3) a group relationship modeling sub-network to model interactions between players. We further fuse the features and decode them into long narratives by a hierarchically recurrent structure. Extensive experiments on the FSN dataset demonstrates the validity of the proposed framework for fine-grained video caption.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"15 2 1","pages":"6006-6015"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78520722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis","authors":"Yujun Shen, Ping Luo, Junjie Yan, Xiaogang Wang, Xiaoou Tang","doi":"10.1109/CVPR.2018.00092","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00092","url":null,"abstract":"Face synthesis has achieved advanced development by using generative adversarial networks (GANs). Existing methods typically formulate GAN as a two-player game, where a discriminator distinguishes face images from the real and synthesized domains, while a generator reduces its discriminativeness by synthesizing a face of photorealistic quality. Their competition converges when the discriminator is unable to differentiate these two domains. Unlike two-player GANs, this work generates identity-preserving faces by proposing FaceID-GAN, which treats a classifier of face identity as the third player, competing with the generator by distinguishing the identities of the real and synthesized faces (see Fig.1). A stationary point is reached when the generator produces faces that have high quality as well as preserve identity. Instead of simply modeling the identity classifier as an additional discriminator, FaceID-GAN is formulated by satisfying information symmetry, which ensures that the real and synthesized images are projected into the same feature space. In other words, the identity classifier is used to extract identity features from both input (real) and output (synthesized) face images of the generator, substantially alleviating training difficulty of GAN. Extensive experiments show that FaceID-GAN is able to generate faces of arbitrary viewpoint while preserve identity, outperforming recent advanced approaches.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"821-830"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72882487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}