Representing and Learning High Dimensional Data with the Optimal Transport Map from a Probabilistic Viewpoint

Serim Park, Matthew Thorpe
{"title":"Representing and Learning High Dimensional Data with the Optimal Transport Map from a Probabilistic Viewpoint","authors":"Serim Park, Matthew Thorpe","doi":"10.1109/CVPR.2018.00820","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a generative model in the space of diffeomorphic deformation maps. More precisely, we utilize the Kantarovich-Wasserstein metric and accompanying geometry to represent an image as a deformation from templates. Moreover, we incorporate a probabilistic viewpoint by assuming that each image is locally generated from a reference image. We capture the local structure by modelling the tangent planes at reference images. Once basis vectors for each tangent plane are learned via probabilistic PCA, we can sample a local coordinate, that can be inverted back to image space exactly. With experiments using 4 different datasets, we show that the generative tangent plane model in the optimal transport (OT) manifold can be learned with small numbers of images and can be used to create infinitely many 'unseen' images. In addition, the Bayesian classification accompanied with the probabilist modeling of the tangent planes shows improved accuracy over that done in the image space. Combining the results of our experiments supports our claim that certain datasets can be better represented with the Kantarovich-Wasserstein metric. We envision that the proposed method could be a practical solution to learning and representing data that is generated with templates in situatons where only limited numbers of data points are available.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"122 1","pages":"7864-7872"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we propose a generative model in the space of diffeomorphic deformation maps. More precisely, we utilize the Kantarovich-Wasserstein metric and accompanying geometry to represent an image as a deformation from templates. Moreover, we incorporate a probabilistic viewpoint by assuming that each image is locally generated from a reference image. We capture the local structure by modelling the tangent planes at reference images. Once basis vectors for each tangent plane are learned via probabilistic PCA, we can sample a local coordinate, that can be inverted back to image space exactly. With experiments using 4 different datasets, we show that the generative tangent plane model in the optimal transport (OT) manifold can be learned with small numbers of images and can be used to create infinitely many 'unseen' images. In addition, the Bayesian classification accompanied with the probabilist modeling of the tangent planes shows improved accuracy over that done in the image space. Combining the results of our experiments supports our claim that certain datasets can be better represented with the Kantarovich-Wasserstein metric. We envision that the proposed method could be a practical solution to learning and representing data that is generated with templates in situatons where only limited numbers of data points are available.
从概率的角度用最优运输图表示和学习高维数据
在本文中,我们提出了一个微分同构变形映射空间中的生成模型。更准确地说,我们利用Kantarovich-Wasserstein度量和伴随的几何来将图像表示为模板的变形。此外,我们结合了概率观点,假设每个图像都是由参考图像局部生成的。我们通过对参考图像的切平面建模来捕获局部结构。一旦通过概率主成分分析学习到每个切平面的基向量,我们就可以对一个局部坐标进行采样,这个局部坐标可以精确地倒转回图像空间。通过使用4个不同数据集的实验,我们证明了最优传输(OT)流形中的生成切平面模型可以用少量图像学习,并且可以用于创建无限多的“看不见的”图像。此外,贝叶斯分类与切面的概率建模相比,在图像空间中显示出更高的精度。结合我们的实验结果支持我们的说法,即某些数据集可以更好地用Kantarovich-Wasserstein度量表示。我们设想,所提出的方法可能是一个实用的解决方案,可以在只有有限数量的数据点可用的情况下,学习和表示由模板生成的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信