用生成对抗网络在野外寻找小面孔

Yancheng Bai, Yongqiang Zhang, M. Ding, Bernard Ghanem
{"title":"用生成对抗网络在野外寻找小面孔","authors":"Yancheng Bai, Yongqiang Zhang, M. Ding, Bernard Ghanem","doi":"10.1109/CVPR.2018.00010","DOIUrl":null,"url":null,"abstract":"Face detection techniques have been developed for decades, and one of remaining open challenges is detecting small faces in unconstrained conditions. The reason is that tiny faces are often lacking detailed information and blurring. In this paper, we proposed an algorithm to directly generate a clear high-resolution face from a blurry small one by adopting a generative adversarial network (GAN). Toward this end, the basic GAN formulation achieves it by super-resolving and refining sequentially (e.g. SR-GAN and cycle-GAN). However, we design a novel network to address the problem of super-resolving and refining jointly. We also introduce new training losses to guide the generator network to recover fine details and to promote the discriminator network to distinguish real vs. fake and face vs. non-face simultaneously. Extensive experiments on the challenging dataset WIDER FACE demonstrate the effectiveness of our proposed method in restoring a clear high-resolution face from a blurry small one, and show that the detection performance outperforms other state-of-the-art methods.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":"{\"title\":\"Finding Tiny Faces in the Wild with Generative Adversarial Network\",\"authors\":\"Yancheng Bai, Yongqiang Zhang, M. Ding, Bernard Ghanem\",\"doi\":\"10.1109/CVPR.2018.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face detection techniques have been developed for decades, and one of remaining open challenges is detecting small faces in unconstrained conditions. The reason is that tiny faces are often lacking detailed information and blurring. In this paper, we proposed an algorithm to directly generate a clear high-resolution face from a blurry small one by adopting a generative adversarial network (GAN). Toward this end, the basic GAN formulation achieves it by super-resolving and refining sequentially (e.g. SR-GAN and cycle-GAN). However, we design a novel network to address the problem of super-resolving and refining jointly. We also introduce new training losses to guide the generator network to recover fine details and to promote the discriminator network to distinguish real vs. fake and face vs. non-face simultaneously. Extensive experiments on the challenging dataset WIDER FACE demonstrate the effectiveness of our proposed method in restoring a clear high-resolution face from a blurry small one, and show that the detection performance outperforms other state-of-the-art methods.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"177\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177

摘要

人脸检测技术已经发展了几十年,其中一个仍然存在的挑战是在无约束条件下检测小人脸。原因是小脸往往缺乏详细的信息和模糊。本文提出了一种采用生成式对抗网络(GAN)从模糊的小人脸直接生成清晰的高分辨率人脸的算法。为此,基本GAN配方通过超分辨和依次精炼(例如SR-GAN和cycle-GAN)来实现。然而,我们设计了一个新的网络来解决超分辨和联合精炼的问题。我们还引入了新的训练损失来引导生成器网络恢复精细细节,并促进鉴别器网络同时区分真假、人脸与非人脸。在具有挑战性的数据集WIDER FACE上进行的大量实验表明,我们提出的方法在从模糊的小人脸中恢复清晰的高分辨率人脸方面是有效的,并且表明检测性能优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Tiny Faces in the Wild with Generative Adversarial Network
Face detection techniques have been developed for decades, and one of remaining open challenges is detecting small faces in unconstrained conditions. The reason is that tiny faces are often lacking detailed information and blurring. In this paper, we proposed an algorithm to directly generate a clear high-resolution face from a blurry small one by adopting a generative adversarial network (GAN). Toward this end, the basic GAN formulation achieves it by super-resolving and refining sequentially (e.g. SR-GAN and cycle-GAN). However, we design a novel network to address the problem of super-resolving and refining jointly. We also introduce new training losses to guide the generator network to recover fine details and to promote the discriminator network to distinguish real vs. fake and face vs. non-face simultaneously. Extensive experiments on the challenging dataset WIDER FACE demonstrate the effectiveness of our proposed method in restoring a clear high-resolution face from a blurry small one, and show that the detection performance outperforms other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信