Single Image Dehazing via Conditional Generative Adversarial Network

Runde Li, Jin-shan Pan, Zechao Li, Jinhui Tang
{"title":"Single Image Dehazing via Conditional Generative Adversarial Network","authors":"Runde Li, Jin-shan Pan, Zechao Li, Jinhui Tang","doi":"10.1109/CVPR.2018.00856","DOIUrl":null,"url":null,"abstract":"In this paper, we present an algorithm to directly restore a clear image from a hazy image. This problem is highly ill-posed and most existing algorithms often use hand-crafted features, e.g., dark channel, color disparity, maximum contrast, to estimate transmission maps and then atmospheric lights. In contrast, we solve this problem based on a conditional generative adversarial network (cGAN), where the clear image is estimated by an end-to-end trainable neural network. Different from the generative network in basic cGAN, we propose an encoder and decoder architecture so that it can generate better results. To generate realistic clear images, we further modify the basic cGAN formulation by introducing the VGG features and an L1-regularized gradient prior. We also synthesize a hazy dataset including indoor and outdoor scenes to train and evaluate the proposed algorithm. Extensive experimental results demonstrate that the proposed method performs favorably against the state-of-the-art methods on both synthetic dataset and real world hazy images.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"6 1","pages":"8202-8211"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"312","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 312

Abstract

In this paper, we present an algorithm to directly restore a clear image from a hazy image. This problem is highly ill-posed and most existing algorithms often use hand-crafted features, e.g., dark channel, color disparity, maximum contrast, to estimate transmission maps and then atmospheric lights. In contrast, we solve this problem based on a conditional generative adversarial network (cGAN), where the clear image is estimated by an end-to-end trainable neural network. Different from the generative network in basic cGAN, we propose an encoder and decoder architecture so that it can generate better results. To generate realistic clear images, we further modify the basic cGAN formulation by introducing the VGG features and an L1-regularized gradient prior. We also synthesize a hazy dataset including indoor and outdoor scenes to train and evaluate the proposed algorithm. Extensive experimental results demonstrate that the proposed method performs favorably against the state-of-the-art methods on both synthetic dataset and real world hazy images.
基于条件生成对抗网络的单幅图像去雾
本文提出了一种从模糊图像中直接恢复清晰图像的算法。这个问题是高度病态的,大多数现有的算法通常使用手工制作的特征,例如,暗通道,色差,最大对比度,来估计传输图,然后是大气光。相比之下,我们基于条件生成对抗网络(cGAN)解决了这个问题,其中清晰图像由端到端可训练神经网络估计。与基本cGAN中的生成网络不同,我们提出了一种编码器和解码器结构,使其产生更好的结果。为了生成真实清晰的图像,我们进一步修改了基本的cGAN公式,引入了VGG特征和l1正则化梯度先验。我们还合成了一个包括室内和室外场景的模糊数据集来训练和评估所提出的算法。大量的实验结果表明,该方法在合成数据集和真实世界的朦胧图像上都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信