2017 IEEE 67th Electronic Components and Technology Conference (ECTC)最新文献

筛选
英文 中文
Electrical Performance of High Density 10 µm Diameter 20 µm Pitch Cu-Pillar with Chip to Wafer Assembly 高密度10µm直径20µm间距铜柱与晶圆组装的电气性能
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.38
A. Garnier, L. Arnaud, R. Franiatte, A. Toffoli, S. Moreau, F. Bana, S. Chéramy
{"title":"Electrical Performance of High Density 10 µm Diameter 20 µm Pitch Cu-Pillar with Chip to Wafer Assembly","authors":"A. Garnier, L. Arnaud, R. Franiatte, A. Toffoli, S. Moreau, F. Bana, S. Chéramy","doi":"10.1109/ECTC.2017.38","DOIUrl":"https://doi.org/10.1109/ECTC.2017.38","url":null,"abstract":"Microbump-based interconnects with 20 µm pitch have been fabricated on 300 mm wafers using industrial tools. Good processes control enables to get narrow standard deviations for the microbumps height (0.2 µm) and diameter (0.4 µm). Assembly was studied with chip to wafer (CtW) test vehicles by either mass reflow (MR) or thermo-compression (TC) with or without non-conductive paste (NCP). MR and TC processes result in suitable CtW alignments without significant defects at bonding interface. TC NCP assembly suffers from larger misalignment and underfill entrapment, reducing top to bottom bonding section. Consequently, unit electrical resistance is lower for MR and TC processes with ~25 m ascribed to pure vertical link, than for TC NCP process exhibiting ~50 m vertical link with larger standard deviation (15 m versus 2 m). Intermetallic compounds have been studied and Ni3Sn4 proves to be the main contributor for electrical resistance in our configuration where SnAg is sandwiched between 2 Ni layers. Electrical yield measured on daisy chains is very good (close to or higher than 90%) for MR or TC, even on more than 20,000 interconnects. For TC NCP, electrical yield remains to be improved, particularly on large daisy chains. Finally, an original electrical test has been designed and successfully implemented to characterize top to bottom misalignment. These results are promising for future high performance computing products that would require 20 µm pitch microbumps.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"82 1","pages":"999-1007"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91402536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Glass Based 3D-IPD Integrated RF ASIC in WLCSP WLCSP中基于玻璃的3D-IPD集成射频ASIC
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.328
T. Lee, Yung-shun Chang, Che-Ming Hsu, Sheng-Chi Hsieh, Pao-Nan Lee, Yu-Chang Hsieh, Long-Ching Wang, Lijuan Zhang
{"title":"Glass Based 3D-IPD Integrated RF ASIC in WLCSP","authors":"T. Lee, Yung-shun Chang, Che-Ming Hsu, Sheng-Chi Hsieh, Pao-Nan Lee, Yu-Chang Hsieh, Long-Ching Wang, Lijuan Zhang","doi":"10.1109/ECTC.2017.328","DOIUrl":"https://doi.org/10.1109/ECTC.2017.328","url":null,"abstract":"As mobile and handheld devices become more functionalities, required to accommodate more frequency bands, and to meet small form factor requirements. IPD (Integrated Passive Device) offers small form factor, and high performance benefits for RF solutions. To achieve a high performance RF filters, high-Q inductor is a key factor. A possible best high-Q inductor can be achieved is by Glass based solenoid inductor. In addition, 3D IPD process is another approach to reduce package size and increase functionality. In this paper, the fabrication process of IPD, based on 8\" glass wafer with Through Glass Via (TGV) to form the 3D solenoid inductor is presented. In addition, the process integration between wafer level, assembly, and double-sided process are addressed. Along the process integration, a RF ASIC is integrated through wafer level and assembly process to form the 3D integrated Wafer Level Chip Scale Package (WLCSP). The quality factor of 3D solenoid inductors can achieve Q of 70~100 in this study. The TGV and package reliability results are also discussed.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"76 1","pages":"631-636"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91531726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Infusing Inorganics into the Subsurface of Polymer Redistribution Layer Dielectrics for Improved Adhesion to Metals Interconnects 注入无机物到聚合物重分布层电介质的亚表面以提高与金属互连的附着力
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.277
Shreya Dwarakanath, P. Raj, Collen Z. Leng, V. Smet, M. Losego, V. Sundaram, R. Tummala
{"title":"Infusing Inorganics into the Subsurface of Polymer Redistribution Layer Dielectrics for Improved Adhesion to Metals Interconnects","authors":"Shreya Dwarakanath, P. Raj, Collen Z. Leng, V. Smet, M. Losego, V. Sundaram, R. Tummala","doi":"10.1109/ECTC.2017.277","DOIUrl":"https://doi.org/10.1109/ECTC.2017.277","url":null,"abstract":"This paper demonstrates a new class of inorganic-organic hybrid dielectric materials to address the requirements for high-temperature reliability of next-generation high-density, high-power packages and electronics in harsh environments for automotive applications. A major concern for reliability is the inadequate adhesion of metals with high-temperature polymers. Adhesion deteriorates further via thermal and oxidative exposure and moisture absorption. In this paper, a novel vapor phase infiltration (VPI) technique is applied to create an organic-inorganic hybrid dielectric surface that improves metal-polymer adhesion. The VPI process infuses inorganic constituents to a depth of at least 3 microns, as revealed by elemental analysis using SEM-EDX and XPS depth profiles. In preliminary testing, Cu/Cr films deposited onto these modified polymer surfaces exhibit 3x higher peel strength than metal films deposited on untreated polymer.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"34 1","pages":"150-155"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90713887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Co-Design for Low Warpage and High Reliability in Advanced Package with TSV-Free Interposer (TFI) 基于TSV-Free Interposer (TFI)的先进封装低翘曲高可靠性协同设计
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.31
F. Che, M. Kawano, M. Ding, Y. Han, S. Bhattacharya
{"title":"Co-Design for Low Warpage and High Reliability in Advanced Package with TSV-Free Interposer (TFI)","authors":"F. Che, M. Kawano, M. Ding, Y. Han, S. Bhattacharya","doi":"10.1109/ECTC.2017.31","DOIUrl":"https://doi.org/10.1109/ECTC.2017.31","url":null,"abstract":"TSV-Free Interposer (TFI) technology eliminates TSV fabrication and reduces manufacturing and material cost. Co-design modelling methodology is established for TFI technology with considering wafer process, package assembly and package/board level reliability and thermal performance to optimize structure design, wafer process, assembly process and material selection. Experimental results are used for validating warpage modelling results. Through wafer level modelling, suitable carrier wafer and EMC materials are recommended to control wafer warpage less than 2mm. Effects of package substrate coefficient of thermal expansion (CTE) and stiffener on assembly induced package warpage are simulated to reduce package warpage. The recommended materials and geometry design based on reliability are aligned with that from wafer and package warpage simulation results. The final test vehicle (TV) design and material selection are determined based on co-design modelling results for achieving successful TFI wafer process and package assembly process and long term package/board level reliability.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"21 1","pages":"853-861"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73987271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
New Method to Separate Failure Modes by Transient Thermal Analysis of High Power LEDs 大功率led瞬态热分析分离失效模式的新方法
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.137
A. Hanss, E. Liu, M. Schmid, D. Müller, U. Karbowski, Robert Derix, G. Elger
{"title":"New Method to Separate Failure Modes by Transient Thermal Analysis of High Power LEDs","authors":"A. Hanss, E. Liu, M. Schmid, D. Müller, U. Karbowski, Robert Derix, G. Elger","doi":"10.1109/ECTC.2017.137","DOIUrl":"https://doi.org/10.1109/ECTC.2017.137","url":null,"abstract":"A high reliability of light emitting diode (LED) light sources is essential for general and automotive lighting applications, where exchange of LED components is expensive. Thermal management of modern high power LEDs is crucial for their lifetime. An important aspect is the thermal path for heat conduction. Many different defects can have an influence on this path of an electronic system: on the one hand process failures during production, e.g. voids inside the solder joint, on the other hand typical failures induced by thermo-mechanical stress during their lifetime, like cracks in the solder joint or delamination in the package. The transient thermal analysis (TTA) is a powerful tool to detect changes in the thermal path. Due to improvements in the TTA method during the last years, not only cracks can be detected but also failure modes can be separated, and the root cause can be analyzed by support of transient finite element analysis. In this paper, transient thermal testing is applied and further developed, to monitor the structural integrity of new wafer level LED packages during thermal stress testing. Failure modes are defined and separated. For failure analysis the different defects are simulated by transient finite element analysis and correlated to the TTA results. The simulation results, that solder cracks increase the peak height of the derivative of the transient thermal curves (b(z)). A delamination of an inner layer of the LED package creates additionally to the increase of the peak height also a separation of the b(z) curves between 1 µs and 5 µs. Therefore a transient thermal measurement equipment with a dead time","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"27 1","pages":"1136-1144"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73242413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Novel, High-Throughput, Fiber-to-Chip Assembly Employing Only Off-the-Shelf Components 新颖,高通量,光纤到芯片组装只使用现成的组件
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.185
N. Boyer, Alexander Janta-Polczynski, J. Morissette, S. Martel, Ted W. Lichoulas, S. Kamlapurkar, S. Engelmann, P. Fortier, T. Barwicz
{"title":"Novel, High-Throughput, Fiber-to-Chip Assembly Employing Only Off-the-Shelf Components","authors":"N. Boyer, Alexander Janta-Polczynski, J. Morissette, S. Martel, Ted W. Lichoulas, S. Kamlapurkar, S. Engelmann, P. Fortier, T. Barwicz","doi":"10.1109/ECTC.2017.185","DOIUrl":"https://doi.org/10.1109/ECTC.2017.185","url":null,"abstract":"Cost-efficient assembly of single-mode fibers to silicon chips is a significant challenge for large-scale deployment of Si photonics. We have previously demonstrated a fully automated approach to parallelized assembly of fiber arrays to nanophotonic chips meant to be performed with standard high-throughput microelectronic tooling. Our original approach required a customization of a standard fiber component, which could limit cost-efficiency and scalability. Here, we demonstrate a novel approach to fiber assembly employing off-the-shelf fiber components only. The new concept employs a dual vacuum pick-tip that can be integrated in standard high-throughput microelectronic tooling. We validate this approach with assemblies of standard 12-fiber interfaces to nanophotonic chips. The assembly performance is assessed via x-ray tomography cross-sections, polished mechanical cross-sections, and optical coupling measurements.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"52 1","pages":"1632-1639"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73369113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Phototriggerable Transient Electronics: Materials and Concepts 光触发瞬态电子学:材料与概念
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.174
O. Phillips, J. Schwartz, A. Engler, Gerald Gourdin, P. Kohl
{"title":"Phototriggerable Transient Electronics: Materials and Concepts","authors":"O. Phillips, J. Schwartz, A. Engler, Gerald Gourdin, P. Kohl","doi":"10.1109/ECTC.2017.174","DOIUrl":"https://doi.org/10.1109/ECTC.2017.174","url":null,"abstract":"Transient electronics is an emerging field oftechnology where the controlled, programmable vaporizationof a device is needed because retrieval is not possible or adifferent form of disposal is desired. Decomposable polymersare of interest and may be used to form electronic componentsand packages. The ability to trigger these polymers todepolymerize and vaporize at ambient conditions can lead tomany applications. Low ceiling temperature polyaldehydeshave been evaluated for transience. Incorporation of morevolatile monomer units significantly increase the evaporationrate of decomposition products. The stimulus fordisappearance is a photochemical reaction that has beenextended from the ultraviolet to the visible region. Chemicalamplification of the trigger source has been demonstrated withacid amplifiers.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"61 1","pages":"772-779"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73823487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Micro-Hermetic Packaging Technology for Active Implantable Neural Interfaces 主动植入式神经接口的微密封封装技术
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.340
K. Nagarkar, Xiaoxiao Hou, N. Stoffel, E. Davis, Jeffrey M. Ashe, D. Borton
{"title":"Micro-Hermetic Packaging Technology for Active Implantable Neural Interfaces","authors":"K. Nagarkar, Xiaoxiao Hou, N. Stoffel, E. Davis, Jeffrey M. Ashe, D. Borton","doi":"10.1109/ECTC.2017.340","DOIUrl":"https://doi.org/10.1109/ECTC.2017.340","url":null,"abstract":"In this paper, we propose a fused silica packaging platform with a micro-cavity designed to house and protect active electronics for neural interfaces. Proof-of-concept test vehicles were specifically designed, fabricated, and packaged in order to evaluate the ability of the packaging to protect against water and ion incursion. Accelerated degradation testing of three test vehicles in physiological saline was performed in a custom-built encapsulation test system (ETS) at 57 °C for 16 days (nominally equivalent to 68 days at 37 °C). Leakage current, as well as gross functionality of the test circuit, was evaluated and is presented as preliminary results.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"23 1","pages":"218-223"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74234736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Equivalent Thermal Conductivity Model Based Full Scale Numerical Simulation for Thermal Management in Fan-Out Packages 基于等效导热模型的扇出封装热管理全尺寸数值模拟
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.82
Ningyu Wang, Yudan Pi, Wei Wang, Yufeng Jin
{"title":"Equivalent Thermal Conductivity Model Based Full Scale Numerical Simulation for Thermal Management in Fan-Out Packages","authors":"Ningyu Wang, Yudan Pi, Wei Wang, Yufeng Jin","doi":"10.1109/ECTC.2017.82","DOIUrl":"https://doi.org/10.1109/ECTC.2017.82","url":null,"abstract":"Exploring along the road of More Moore with integration degree increasing significantly, different wafer level 3-D technologies are developed facing various circumstances. Thermal issue has become an important concern in IC designing and manufacturing. Fan-out wafer level package (FOWLP), as one of the most popular packaging trends lately, compared to high cost through silicon via (TSV) based 3D integration method, requires system level thermal management. Full scale numerical simulation as a critical procedure is facing huge difficulties, such as huge structure size variation, huge thermal properties variation, in-plane and off-plane displacement, etc. Equivalent thermal conductivity model (ETCM) based full scale numerical simulation for thermal management, which has already been applied to TSV based 3-D ICs with computation consumption significantly decreased, is applied to Fan-out packages in this paper. Equivalent and anisotropic thermal conductivity is calculated and modified concerning FOWLP structure and material thermal properties. A chip-first face-up fan-out package with 100 pads and 100 bumps is modeled and simulated, with mesh elements number drops from 874836 to 174810. With more than 80% computation consumption saved, less than 2% difference in total temperature rise is obtained compared with detail simulation.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"137 1","pages":"2054-2059"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80091122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Thermally Reversible and Crosslinked Polyurethane Based on Diels-Alder Chemistry for Ultrathin Wafer Temporary Bonding at Low-Temperature 基于diols - alder化学的热可逆交联聚氨酯在低温下用于超薄晶片临时键合
2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Pub Date : 2017-05-01 DOI: 10.1109/ECTC.2017.295
Jinhui Li, Qiang Liu, Guoping Zhang, Bin Zhao, R. Sun, C. Wong
{"title":"Thermally Reversible and Crosslinked Polyurethane Based on Diels-Alder Chemistry for Ultrathin Wafer Temporary Bonding at Low-Temperature","authors":"Jinhui Li, Qiang Liu, Guoping Zhang, Bin Zhao, R. Sun, C. Wong","doi":"10.1109/ECTC.2017.295","DOIUrl":"https://doi.org/10.1109/ECTC.2017.295","url":null,"abstract":"2.5D and 3D Integration technology using temporary bonding has become main stream in the semiconductor industry in recent years. However, thermal stability, low damage, and debonding at comparative low temperature are still areas of challenge. In this present study, a novel three-dimensional crosslinked polyurethane (3DPU) based on thermal reversible Diels-Alder chemistry, which can be used as temporary bonding adhesive to support wafer thinning and back side processes and be de-bonded by typical thermal-sliding method at comparatively low-temperature, has been developed. The crosslinked 3DPU showed high thermal stability and excellent adhesion strength both at room temperature and higher temperature. The adhesion strength of 3DPU decreased when the wafer pair was heat to the de-bonding temperature (150 oC) when the retro-DA reaction happened which guaranteed a low-temperature de-bonding process.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"24 1","pages":"746-751"},"PeriodicalIF":0.0,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81494574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信