Glass Based 3D-IPD Integrated RF ASIC in WLCSP

T. Lee, Yung-shun Chang, Che-Ming Hsu, Sheng-Chi Hsieh, Pao-Nan Lee, Yu-Chang Hsieh, Long-Ching Wang, Lijuan Zhang
{"title":"Glass Based 3D-IPD Integrated RF ASIC in WLCSP","authors":"T. Lee, Yung-shun Chang, Che-Ming Hsu, Sheng-Chi Hsieh, Pao-Nan Lee, Yu-Chang Hsieh, Long-Ching Wang, Lijuan Zhang","doi":"10.1109/ECTC.2017.328","DOIUrl":null,"url":null,"abstract":"As mobile and handheld devices become more functionalities, required to accommodate more frequency bands, and to meet small form factor requirements. IPD (Integrated Passive Device) offers small form factor, and high performance benefits for RF solutions. To achieve a high performance RF filters, high-Q inductor is a key factor. A possible best high-Q inductor can be achieved is by Glass based solenoid inductor. In addition, 3D IPD process is another approach to reduce package size and increase functionality. In this paper, the fabrication process of IPD, based on 8\" glass wafer with Through Glass Via (TGV) to form the 3D solenoid inductor is presented. In addition, the process integration between wafer level, assembly, and double-sided process are addressed. Along the process integration, a RF ASIC is integrated through wafer level and assembly process to form the 3D integrated Wafer Level Chip Scale Package (WLCSP). The quality factor of 3D solenoid inductors can achieve Q of 70~100 in this study. The TGV and package reliability results are also discussed.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"76 1","pages":"631-636"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2017.328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

As mobile and handheld devices become more functionalities, required to accommodate more frequency bands, and to meet small form factor requirements. IPD (Integrated Passive Device) offers small form factor, and high performance benefits for RF solutions. To achieve a high performance RF filters, high-Q inductor is a key factor. A possible best high-Q inductor can be achieved is by Glass based solenoid inductor. In addition, 3D IPD process is another approach to reduce package size and increase functionality. In this paper, the fabrication process of IPD, based on 8" glass wafer with Through Glass Via (TGV) to form the 3D solenoid inductor is presented. In addition, the process integration between wafer level, assembly, and double-sided process are addressed. Along the process integration, a RF ASIC is integrated through wafer level and assembly process to form the 3D integrated Wafer Level Chip Scale Package (WLCSP). The quality factor of 3D solenoid inductors can achieve Q of 70~100 in this study. The TGV and package reliability results are also discussed.
WLCSP中基于玻璃的3D-IPD集成射频ASIC
随着移动和手持设备的功能越来越多,需要适应更多的频段,并满足小尺寸的要求。IPD(集成无源器件)为射频解决方案提供了小尺寸和高性能的优势。要实现高性能射频滤波器,高q电感是一个关键因素。一个可能最好的高q电感可以实现是基于玻璃的电磁电感。此外,3D IPD工艺是减小封装尺寸和增加功能的另一种方法。本文介绍了一种基于8英寸玻璃晶圆,通过玻璃通孔(TGV)形成三维电磁电感的IPD的制造工艺。此外,还讨论了晶圆级、组装和双面制程之间的工艺集成。沿着工艺集成,RF ASIC通过晶圆级和组装工艺集成,形成3D集成晶圆级芯片规模封装(WLCSP)。在本研究中,三维电磁电感器的质量因子Q可达到70~100。对TGV和封装可靠性结果也进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信