美国计算数学期刊(英文)Pub Date : 2020-12-01DOI: 10.4236/ajcm.2020.104035
H. Sarafian
{"title":"Impact of Eccentricity on Nonlinear Oscillations of a Point-Like Charge in the Electric Field of a Curvature-Dependent Elliptic Charged Ellipse","authors":"H. Sarafian","doi":"10.4236/ajcm.2020.104035","DOIUrl":"https://doi.org/10.4236/ajcm.2020.104035","url":null,"abstract":"Calculation of the interactive force between two horizontally stacked circular uniformly charged rings placed along the common vertical axis conducive to nonlinear oscillations under gravity has been addressed [1]. Although challenging, nonetheless the scope of the study limited to uniform charge distributions of the rings. Here we extend the analysis considering a charged ellipse with a nonuniform, curvature-dependent elliptic charge distribution exerting a force on a point-like charge placed on the vertical symmetry axis. Nonuniform charge distribution and its impact on various practical scenarios are not a common theme addressed in literature. Applying Computer Algebra System (CAS) particularly Mathematica [2], we analyze the issue on hand augmenting the traditional scope of interest. We overcome the CPU expensive symbolic computation following our newly developed numeric/symbolic method [1]. For comprehensive understanding, we simulate the nonlinear oscillations.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":"10 1","pages":"603-611"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43250067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
美国计算数学期刊(英文)Pub Date : 2020-12-01DOI: 10.4236/ajcm.2020.104028
Faishal Badsha, Rafiqul Islam
{"title":"Emotion Detection by Analyzing Voice Signal Using Wavelet","authors":"Faishal Badsha, Rafiqul Islam","doi":"10.4236/ajcm.2020.104028","DOIUrl":"https://doi.org/10.4236/ajcm.2020.104028","url":null,"abstract":"Emotion is such a unique power of human trial that plays a vital role in distinguishing human civilization from others. Voice is one of the most important media of expressing emotion. We can identify many types of emotions by talking or listening to voices. This is what we know as a voice signal. Just as the way people talk is different, so is the way they express emotions. By looking or hearing a person’s way of speaking, we can easily guess his/her personality and instantaneous emotions. People’s emotion and feelings are expressed in different ways. It is through the expression of emotions and feelings that people fully express his thoughts. Happiness, sadness, and anger are the main medium of expression way of different human emotions. To express these emotions, people use body postures, facial expressions and vocalizations. Though people use a variety of means to express emotions and feelings, the easiest and most complete way to express emotion and feelings is voice signal. The subject of our study is whether we can identify the right human emotion by examining the human voice signal. By analyzing the voice signal through wavelet, we have tried to show whether the mean frequency, maximum frequency and Lp values conform to a pattern according to its different sensory types. Moreover, the technique applied here is to develop a concept using MATLAB programming, which will compare the mean frequency, maximum frequency and Lp norm to find relation and detect emotion by analyzing different voices.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47302372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
美国计算数学期刊(英文)Pub Date : 2020-07-21DOI: 10.4236/ajcm.2020.103027
Abidha Monica Gwecho, Shu Wang, Onyango Thomas Mboya
{"title":"Existence of Approximate Solutions for Modified Poisson Nernst-Planck Describing Ion Flow in Cell Membranes","authors":"Abidha Monica Gwecho, Shu Wang, Onyango Thomas Mboya","doi":"10.4236/ajcm.2020.103027","DOIUrl":"https://doi.org/10.4236/ajcm.2020.103027","url":null,"abstract":"Dynamics of ions in biological ion channels has been classically analyzed using several types of Poisson-Nernst Planck (PNP) equations. However, due to complex interaction between individual ions and ions with the channel walls, minimal incorporation of these interaction factors in the models to describe the flow phenomena accurately has been done. In this paper, we aim at formulating a modified PNP equation which constitutes finite size effects to capture ions interactions in the channel using Lennard Jonnes (LJ) potential theory. Particularly, the study examines existence and uniqueness of the approximate analytical solutions of the mPNP equations, First, by obtaining the priori energy estimate and providing solution bounds, and finally constructing the approximate solutions and establishing its convergence in a finite dimensional subspace in L2, the approximate solution of the linearized mPNP equations was found to converge to the analytical solution, hence proof of existence.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45057630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
美国计算数学期刊(英文)Pub Date : 2020-07-21DOI: 10.4236/ajcm.2020.103021
A. Mohammed, O. H. Bakodah
{"title":"Numerical Consideration of Chen-Lee-Liu Equation through Modification Method for Various Types of Solitons","authors":"A. Mohammed, O. H. Bakodah","doi":"10.4236/ajcm.2020.103021","DOIUrl":"https://doi.org/10.4236/ajcm.2020.103021","url":null,"abstract":"The purpose of the current study is to assess the effectiveness and exactness of the new Modification of the Adomian Decomposition (MAD) method in providing fast converging numerical solutions for the Chen-Lee-Liu (CLL) equation. In addition, we are able to simulate the scheme and provide a comparative analysis with the help of some exact soliton solutions in optical fibers. Finally, the MAD method uncovered that the strategy is proven to be reliable due to the elevated level of accuracy and less computational advances, as demonstrated by a series of tables and figures.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":"10 1","pages":"398-409"},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42813636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
美国计算数学期刊(英文)Pub Date : 2020-07-21DOI: 10.4236/ajcm.2020.103023
H. Sarafian
{"title":"Envelope of Family of Angled Projectiles and Its Universal Geometric Characteristics","authors":"H. Sarafian","doi":"10.4236/ajcm.2020.103023","DOIUrl":"https://doi.org/10.4236/ajcm.2020.103023","url":null,"abstract":"Geometric properties of trajectories of angled projectiles under gravity pull are a popular common traditional theme discussed in introductory physics and engineering college courses. What is overlooked is the universal collective properties of the overarching specificities of families of such parabolas, the envelope. For instance [1] and references within explored the existence of one such envelope, however, even the most recent article [2] overlooked its global hidden properties. Here, we investigate exposing this hidden information. Having the equation of the envelope on hand we introduce its universal characteristics such as its: arc length, enclosed 2D surface area, surface area of the surface-of-revolution about the symmetry axis, and, the volume of the enclosure. Numeric values of these quantities are global as is e.g. the 45° projectile angle that maximizes the range of a projectile in vacuum irrespective, its initial speed. In our exploratory investigation, we utilize the popular Computer Algebra System (CAS) MathematicaTM [3] [4] [5].","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45037175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
美国计算数学期刊(英文)Pub Date : 2020-07-21DOI: 10.4236/ajcm.2020.103018
D. Cacuci
{"title":"Second-Order Adjoint Sensitivity Analysis Methodology for Computing Exactly Response Sensitivities to Uncertain Parameters and Boundaries of Linear Systems: Mathematical Framework","authors":"D. Cacuci","doi":"10.4236/ajcm.2020.103018","DOIUrl":"https://doi.org/10.4236/ajcm.2020.103018","url":null,"abstract":"This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2nd-CASAM)” for the efficient and exact computation of 1st- and 2nd-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (i.e., model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2nd-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1st-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2nd-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (N2/2 + 3 N/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2nd-LASS requires very little additional effort beyond the construction of the 1st-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1st-LASS and 2nd-LASS requires the same computational solvers as needed for solving (i.e., “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1st-LASS and the 2nd-LASS. Since neither the 1st-LASS nor the 2nd-LASS involves any differentials of the operators underlying the original system, the 1st-LASS is designated as a “first-level” (as opposed to a “first-order”) adjoint sensitivity system, while the 2nd-LASS is designated as a “second-level” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2nd-LASS that involve the imprecisely known boundary parameters. Notably, the 2nd-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45110773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
美国计算数学期刊(英文)Pub Date : 2020-07-21DOI: 10.4236/ajcm.2020.103022
Md. Farooq Hasan, Md. Abdus Sobhan
{"title":"Describing Fuzzy Membership Function and Detecting the Outlier by Using Five Number Summary of Data","authors":"Md. Farooq Hasan, Md. Abdus Sobhan","doi":"10.4236/ajcm.2020.103022","DOIUrl":"https://doi.org/10.4236/ajcm.2020.103022","url":null,"abstract":"One of the most important activities in data science is defining a membership function in fuzzy system. Although there are few ways to describe membership function like artificial neural networks, genetic algorithms etc.; they are very complex and time consuming. On the other hand, the presence of outlier in a data set produces deceptive results in the modeling. So it is important to detect and eliminate them to prevent their negative effect on the modeling. This paper describes a new and simple way of constructing fuzzy membership function by using five-number summary of a data set. Five states membership function can be created in this new method. At the same time, if there is any outlier in the data set, it can be detected with the help of this method. Usually box plot is used to identify the outliers of a data set. So along with the new approach, the box plot has also been drawn so that it is understood that the results obtained in the new method are accurate. Several real life examples and their analysis have been discussed with graph to demonstrate the potential of the proposed method. The results obtained show that the proposed method has given good results. In the case of outlier, the proposed method and the box plot method have shown similar results. Primary advantage of this new procedure is that it is not as expensive as neural networks, and genetic algorithms.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":"10 1","pages":"410-424"},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42641243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
美国计算数学期刊(英文)Pub Date : 2020-07-21DOI: 10.4236/ajcm.2020.103026
S. Akter, Mir Md. Moheuddin, Saddam Hossain, Asia Khatun
{"title":"Operations and Actions of Lie Groups on Manifolds","authors":"S. Akter, Mir Md. Moheuddin, Saddam Hossain, Asia Khatun","doi":"10.4236/ajcm.2020.103026","DOIUrl":"https://doi.org/10.4236/ajcm.2020.103026","url":null,"abstract":"As recounted in this paper, the idea of groups is one that has evolved from some very intuitive concepts. We can do binary operations like adding or multiplying two elements and also binary operations like taking the square root of an element (in this case the result is not always in the set). In this paper, we aim to find the operations and actions of Lie groups on manifolds. These actions can be applied to the matrix group and Bi-invariant forms of Lie groups and to generalize the eigenvalues and eigenfunctions of differential operators on Rn. A Lie group is a group as well as differentiable manifold, with the property that the group operations are compatible with the smooth structure on which group manipulations, product and inverse, are distinct. It plays an extremely important role in the theory of fiber bundles and also finds vast applications in physics. It represents the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. Here we did work flat out to represent the mathematical aspects of Lie groups on manifolds.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42311650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
美国计算数学期刊(英文)Pub Date : 2020-07-21DOI: 10.4236/ajcm.2020.103024
H. Sarafian
{"title":"Global Characteristics of the Envelope of Family of Trajectories in Resistive Media","authors":"H. Sarafian","doi":"10.4236/ajcm.2020.103024","DOIUrl":"https://doi.org/10.4236/ajcm.2020.103024","url":null,"abstract":"In our recent article [1], we discussed the universal geometric characteristics of the envelope of family of trajectories of projectiles projected with the same speeds and different velocities in a vertical plane under the sole influence of gravity; our current investigation is its natural extension. As shown in [1] even for the simplest case where gravity is the only acting external agent literature overlooked reveling the characteristics of the envelope such as its arc-length, the surface area of the enclosed surface and etc. Calculation leading to these has carried out mostly longhand [1]. The current extended version embodies a realistic scenario where the projectiles in addition to gravity encounter linear velocity-dependent media resistance. In order to fulfil objectives similar to [1], we develop two distinct strategies obtaining the analytic equation for the envelope. On one hand, we solve the equations of motion applying traditional longhand approach. On the other hand, we adopt a Computer Algebra System (CAS), e.g. Mathematica [2] [3]. Having these outputs at hand, via mixed-mode calculation—some longhand and some via CAS—we explore its global geometric characteristics such as its arc-length, the surface area of the enclosure. Because of the calculation complexities we could not have achieved our set goals.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":"10 1","pages":"431-440"},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47729532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
美国计算数学期刊(英文)Pub Date : 2020-07-21DOI: 10.4236/ajcm.2020.103019
D. Cacuci
{"title":"Illustrative Application of the 2nd-Order Adjoint Sensitivity Analysis Methodology to a Paradigm Linear Evolution/Transmission Model: Point-Detector Response","authors":"D. Cacuci","doi":"10.4236/ajcm.2020.103019","DOIUrl":"https://doi.org/10.4236/ajcm.2020.103019","url":null,"abstract":"This work illustrates the application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2nd-CASAM) to a mathematical model that can simulate the evolution and/or transmission of particles in a heterogeneous medium. The model response is the value of the model’s state function (particle concentration or particle flux) at a point in phase-space, which would simulate a pointwise measurement of the respective state function. This paradigm model admits exact closed-form expressions for all of the 1st- and 2nd-order response sensitivities to the model’s uncertain parameters and domain boundaries. These closed-form expressions can be used to verify the numerical results of production and/or commercial software, e.g., particle transport codes. Furthermore, this paradigm model comprises many uncertain parameters which have relative sensitivities of identical magnitudes. Therefore, this paradigm model could serve as a stringent benchmark for inter-comparing the performances of all deterministic and statistical sensitivity analysis methods, including the 2nd-CASAM.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41693873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}