流形上李群的运算与作用

S. Akter, Mir Md. Moheuddin, Saddam Hossain, Asia Khatun
{"title":"流形上李群的运算与作用","authors":"S. Akter, Mir Md. Moheuddin, Saddam Hossain, Asia Khatun","doi":"10.4236/ajcm.2020.103026","DOIUrl":null,"url":null,"abstract":"As recounted in this paper, the idea of groups is one that has evolved from some very intuitive concepts. We can do binary operations like adding or multiplying two elements and also binary operations like taking the square root of an element (in this case the result is not always in the set). In this paper, we aim to find the operations and actions of Lie groups on manifolds. These actions can be applied to the matrix group and Bi-invariant forms of Lie groups and to generalize the eigenvalues and eigenfunctions of differential operators on Rn. A Lie group is a group as well as differentiable manifold, with the property that the group operations are compatible with the smooth structure on which group manipulations, product and inverse, are distinct. It plays an extremely important role in the theory of fiber bundles and also finds vast applications in physics. It represents the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. Here we did work flat out to represent the mathematical aspects of Lie groups on manifolds.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operations and Actions of Lie Groups on Manifolds\",\"authors\":\"S. Akter, Mir Md. Moheuddin, Saddam Hossain, Asia Khatun\",\"doi\":\"10.4236/ajcm.2020.103026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As recounted in this paper, the idea of groups is one that has evolved from some very intuitive concepts. We can do binary operations like adding or multiplying two elements and also binary operations like taking the square root of an element (in this case the result is not always in the set). In this paper, we aim to find the operations and actions of Lie groups on manifolds. These actions can be applied to the matrix group and Bi-invariant forms of Lie groups and to generalize the eigenvalues and eigenfunctions of differential operators on Rn. A Lie group is a group as well as differentiable manifold, with the property that the group operations are compatible with the smooth structure on which group manipulations, product and inverse, are distinct. It plays an extremely important role in the theory of fiber bundles and also finds vast applications in physics. It represents the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. Here we did work flat out to represent the mathematical aspects of Lie groups on manifolds.\",\"PeriodicalId\":64456,\"journal\":{\"name\":\"美国计算数学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国计算数学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2020.103026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2020.103026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正如本文所述,群体的概念是从一些非常直观的概念演变而来的。我们可以做二进制运算,比如两个元素的相加或相乘,也可以做二进制运算,比如取一个元素的平方根(在这种情况下,结果并不总是在集合中)。本文的目的是找出李群在流形上的运算和作用。这些作用可以应用于李群的矩阵群和双不变形式,并推广了Rn上微分算子的特征值和特征函数。李群是群也是可微流形,其性质是群运算与光滑结构相容,在光滑结构上,群运算的乘积和逆是不同的。它在纤维束理论中起着极其重要的作用,在物理学中也有广泛的应用。它代表了数学对象和结构的连续对称的最发达的理论,这使它们成为当代数学的许多部分以及现代理论物理不可或缺的工具。在这里,我们做了大量的工作来表示流形上李群的数学方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operations and Actions of Lie Groups on Manifolds
As recounted in this paper, the idea of groups is one that has evolved from some very intuitive concepts. We can do binary operations like adding or multiplying two elements and also binary operations like taking the square root of an element (in this case the result is not always in the set). In this paper, we aim to find the operations and actions of Lie groups on manifolds. These actions can be applied to the matrix group and Bi-invariant forms of Lie groups and to generalize the eigenvalues and eigenfunctions of differential operators on Rn. A Lie group is a group as well as differentiable manifold, with the property that the group operations are compatible with the smooth structure on which group manipulations, product and inverse, are distinct. It plays an extremely important role in the theory of fiber bundles and also finds vast applications in physics. It represents the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. Here we did work flat out to represent the mathematical aspects of Lie groups on manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
348
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信