二阶伴随灵敏度分析方法在典型线性演化/传输模型中的说明性应用:点检测器响应

D. Cacuci
{"title":"二阶伴随灵敏度分析方法在典型线性演化/传输模型中的说明性应用:点检测器响应","authors":"D. Cacuci","doi":"10.4236/ajcm.2020.103019","DOIUrl":null,"url":null,"abstract":"This work illustrates the application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2nd-CASAM) to a mathematical model that can simulate the evolution and/or transmission of particles in a heterogeneous medium. The model response is the value of the model’s state function (particle concentration or particle flux) at a point in phase-space, which would simulate a pointwise measurement of the respective state function. This paradigm model admits exact closed-form expressions for all of the 1st- and 2nd-order response sensitivities to the model’s uncertain parameters and domain boundaries. These closed-form expressions can be used to verify the numerical results of production and/or commercial software, e.g., particle transport codes. Furthermore, this paradigm model comprises many uncertain parameters which have relative sensitivities of identical magnitudes. Therefore, this paradigm model could serve as a stringent benchmark for inter-comparing the performances of all deterministic and statistical sensitivity analysis methods, including the 2nd-CASAM.","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Illustrative Application of the 2nd-Order Adjoint Sensitivity Analysis Methodology to a Paradigm Linear Evolution/Transmission Model: Point-Detector Response\",\"authors\":\"D. Cacuci\",\"doi\":\"10.4236/ajcm.2020.103019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work illustrates the application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2nd-CASAM) to a mathematical model that can simulate the evolution and/or transmission of particles in a heterogeneous medium. The model response is the value of the model’s state function (particle concentration or particle flux) at a point in phase-space, which would simulate a pointwise measurement of the respective state function. This paradigm model admits exact closed-form expressions for all of the 1st- and 2nd-order response sensitivities to the model’s uncertain parameters and domain boundaries. These closed-form expressions can be used to verify the numerical results of production and/or commercial software, e.g., particle transport codes. Furthermore, this paradigm model comprises many uncertain parameters which have relative sensitivities of identical magnitudes. Therefore, this paradigm model could serve as a stringent benchmark for inter-comparing the performances of all deterministic and statistical sensitivity analysis methods, including the 2nd-CASAM.\",\"PeriodicalId\":64456,\"journal\":{\"name\":\"美国计算数学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国计算数学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2020.103019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2020.103019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这项工作说明了“二阶综合伴随灵敏度分析方法”(2nd CASAM)在一个数学模型中的应用,该模型可以模拟粒子在非均匀介质中的演化和/或传输。模型响应是模型在相空间中某一点的状态函数(粒子浓度或粒子通量)的值,这将模拟相应状态函数的逐点测量。该范式模型允许对模型的不确定参数和域边界的所有一阶和二阶响应灵敏度的精确闭合形式表达式。这些闭式表达式可用于验证生产和/或商业软件(例如粒子传输代码)的数值结果。此外,该范式模型包括许多不确定的参数,这些参数具有相同大小的相对灵敏度。因此,该范式模型可以作为一个严格的基准,用于相互比较所有确定性和统计敏感性分析方法的性能,包括第二次CASAM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Illustrative Application of the 2nd-Order Adjoint Sensitivity Analysis Methodology to a Paradigm Linear Evolution/Transmission Model: Point-Detector Response
This work illustrates the application of the “Second Order Comprehensive Adjoint Sensitivity Analysis Methodology” (2nd-CASAM) to a mathematical model that can simulate the evolution and/or transmission of particles in a heterogeneous medium. The model response is the value of the model’s state function (particle concentration or particle flux) at a point in phase-space, which would simulate a pointwise measurement of the respective state function. This paradigm model admits exact closed-form expressions for all of the 1st- and 2nd-order response sensitivities to the model’s uncertain parameters and domain boundaries. These closed-form expressions can be used to verify the numerical results of production and/or commercial software, e.g., particle transport codes. Furthermore, this paradigm model comprises many uncertain parameters which have relative sensitivities of identical magnitudes. Therefore, this paradigm model could serve as a stringent benchmark for inter-comparing the performances of all deterministic and statistical sensitivity analysis methods, including the 2nd-CASAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
348
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信