角度炮弹族包络及其普遍几何特征

H. Sarafian
{"title":"角度炮弹族包络及其普遍几何特征","authors":"H. Sarafian","doi":"10.4236/ajcm.2020.103023","DOIUrl":null,"url":null,"abstract":"Geometric properties of trajectories of angled projectiles under gravity pull are a popular common traditional theme discussed in introductory physics and engineering college courses. What is overlooked is the universal collective properties of the overarching specificities of families of such parabolas, the envelope. For instance [1] and references within explored the existence of one such envelope, however, even the most recent article [2] overlooked its global hidden properties. Here, we investigate exposing this hidden information. Having the equation of the envelope on hand we introduce its universal characteristics such as its: arc length, enclosed 2D surface area, surface area of the surface-of-revolution about the symmetry axis, and, the volume of the enclosure. Numeric values of these quantities are global as is e.g. the 45° projectile angle that maximizes the range of a projectile in vacuum irrespective, its initial speed. In our exploratory investigation, we utilize the popular Computer Algebra System (CAS) MathematicaTM [3] [4] [5].","PeriodicalId":64456,"journal":{"name":"美国计算数学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Envelope of Family of Angled Projectiles and Its Universal Geometric Characteristics\",\"authors\":\"H. Sarafian\",\"doi\":\"10.4236/ajcm.2020.103023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometric properties of trajectories of angled projectiles under gravity pull are a popular common traditional theme discussed in introductory physics and engineering college courses. What is overlooked is the universal collective properties of the overarching specificities of families of such parabolas, the envelope. For instance [1] and references within explored the existence of one such envelope, however, even the most recent article [2] overlooked its global hidden properties. Here, we investigate exposing this hidden information. Having the equation of the envelope on hand we introduce its universal characteristics such as its: arc length, enclosed 2D surface area, surface area of the surface-of-revolution about the symmetry axis, and, the volume of the enclosure. Numeric values of these quantities are global as is e.g. the 45° projectile angle that maximizes the range of a projectile in vacuum irrespective, its initial speed. In our exploratory investigation, we utilize the popular Computer Algebra System (CAS) MathematicaTM [3] [4] [5].\",\"PeriodicalId\":64456,\"journal\":{\"name\":\"美国计算数学期刊(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国计算数学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2020.103023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国计算数学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ajcm.2020.103023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重力作用下有角度弹丸轨迹的几何性质是大学物理和工程导论课程中讨论的一个常见的传统主题。被忽视的是这种抛物线族的总体特性的普遍集体属性,即包络线。例如,[1]和参考文献探讨了这样一个信封的存在,然而,即使是最近的文章[2]也忽略了它的全局隐藏属性。在这里,我们研究如何暴露这些隐藏的信息。有了包络线的方程,我们引入了包络线的普遍特征,如弧长、封闭的二维表面积、绕对称轴旋转的表面面积以及包络线的体积。这些量的数值是全局的,例如,45°的射角使射弹在真空中的射程最大化,而不考虑其初始速度。在我们的探索性研究中,我们使用了流行的计算机代数系统(CAS) MathematicaTM[3][4][5]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Envelope of Family of Angled Projectiles and Its Universal Geometric Characteristics
Geometric properties of trajectories of angled projectiles under gravity pull are a popular common traditional theme discussed in introductory physics and engineering college courses. What is overlooked is the universal collective properties of the overarching specificities of families of such parabolas, the envelope. For instance [1] and references within explored the existence of one such envelope, however, even the most recent article [2] overlooked its global hidden properties. Here, we investigate exposing this hidden information. Having the equation of the envelope on hand we introduce its universal characteristics such as its: arc length, enclosed 2D surface area, surface area of the surface-of-revolution about the symmetry axis, and, the volume of the enclosure. Numeric values of these quantities are global as is e.g. the 45° projectile angle that maximizes the range of a projectile in vacuum irrespective, its initial speed. In our exploratory investigation, we utilize the popular Computer Algebra System (CAS) MathematicaTM [3] [4] [5].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
348
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信