{"title":"Determination of the nonlinear physical constants in a piezoelectric AlN film","authors":"D. Feld, D. Shim","doi":"10.1109/ULTSYM.2010.5935997","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935997","url":null,"abstract":"Recent models vary widely as to the mechanism in the piezoelectric AlN film that gives rise to the measured 2nd and 3rd order nonlinear behavior in BAW resonators. As an example one model suggests that a strain dependence of the bulk modulus in a piezoelectric AlN film is responsible for both the 2nd and 3rd order response of BAW and FBAR resonators [Collado]. We call this model the \"bulk-bulk\" model since the bulk modulus depends on the strain in each order respectively. We find that this \"bulk-bulk\" model is not capable of modeling our measured second harmonic (H2), and intermodulation distortion (IMD3) data simultaneously. When the 2nd order coefficient is chosen to match the measured 2nd harmonic response, it generates an IMD3 response through a process of remixing at a frequency 2F1-F0 which is larger than our measured data by ∼45 dBs when two +24 dBm tones are applied. It appears the authors did not fully incorporate their chosen non-linearity into their model. As a result the \"bulk-bulk\" non-linear model of the AlN film must be abandoned in favor of a new model — a \"general\" nonlinear Mason model, in which a complete set of 2nd and 3rd order nonlinear mechanisms can be evaluated to see which are consistent with the data. Such a model is described in this work and in a companion paper. Using this model we show that a strain dependent piezoelectric coefficient must be employed to model the H2 behavior without modeling an IMD3 response that is much larger than what is measured. To fit the IMD3 data a 3rd order strain dependent bulk modulus must also be incorporated. The resulting model is a \"piezo-bulk\" model for suggesting that the piezo coefficient and the bulk modulus have a 2nd and 3rd order dependence on strain, respectively. We also show that another recent model [Ueda] is not suitable for evaluating the underlying nonlinear physics because it violates conservation of energy and does not allow for remixing.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74841275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anomalous dispersion of SAW in platinum grating on langasite with Euler angles (0°, 138.5°, 26.6°)","authors":"N. Naumenko","doi":"10.1109/ULTSYM.2010.5935506","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935506","url":null,"abstract":"The numerical technique recently developed for simulation of SAW dispersion in periodic gratings was applied to langasite cut with Euler angles (0°,138.5°,26.6°) and platinum grating, when electrode thickness varies between 1% and 6% λ (SAW wavelength). Analysis has revealed that with increasing Pt thickness, the dispersion appears to be strongly affected by interaction between two SAW modes. It results in additional stopband, which occurs at certain detuning from synchronous reflection condition and manifests itself by additional resonances of admittance function if such detuning occurs in SAW resonator. The anomalous character of dispersion is not adequately described by the known COM models and can explain the slow growth of reflectivity with increasing electrode thickness.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78624486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New touch technology from time reversal acoustics: A history","authors":"J. Kent","doi":"10.1109/ULTSYM.2010.5935502","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935502","url":null,"abstract":"Based on principles from time reversal acoustics, a new acoustics based touchscreen technology has entered the marketplace. Based on accounts of key contributors, this paper presents a history of the developments behind the invention, development and commercialization of this new touchscreen technology. This illustrates innovation from lab to marketplace.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76150609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rayleigh wave propagating in layered magneto-electro-elastic material structures","authors":"Jianke Du, Xiaoyu Cheng, Ji Wang, Y. Yong","doi":"10.1109/ULTSYM.2010.5935860","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935860","url":null,"abstract":"An exact approach is used to investigate Rayleigh waves in magneto-electro-elastic material structure which involves a piezomagnetic layer bonded to a semi-infinite homogeneous piezoelectric substrate. The piezomagneticity and piezoelectricity are both polarized in z-axis direction. The analytical solution of dispersion relations is obtained and the results are presented.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80505285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Nelson, A. Tran, Hourieh Farourfar, Jakob Nebeker
{"title":"Ultrasound image-guided robotic breast biopsy","authors":"T. Nelson, A. Tran, Hourieh Farourfar, Jakob Nebeker","doi":"10.1109/ULTSYM.2010.5935964","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935964","url":null,"abstract":"Objective: To assess performance of dedicated volume breast ultrasound imaging (VBUS) system integrated with a compact robotic biopsy device to provide precision image-guided breast lesion biopsy. Methods: We integrated our VBUS system with a compact robotic device having a 6-DOF articulated arm to reach any breast location. A load sensor measured force and torque to provide real-time data regarding biopsy device insertion and penetration forces. Ultrasound volume image data provided 3-dimensional lesion coordinates. Targeting and guidance algorithms optimized the path for insertion of a Mammotome™ vacuum biopsy device. System performance was evaluated by scanning breast test objects having simulated lesions and a cubic grid of sample locations. We measured targeting error and reproducibility. Results: VBUS volume data were acquired in 20 sec/slice and showed ∼1 mm spatial resolution with lesions clearly identified. Targeting accuracy was within ±1 mm over the robotic workspace. Reproducibility was excellent. Force feedback data showed good sensitivity to needle forces. Discussion and Conclusions: Ultrasound volume data assisted robotic targeting and guidance algorithms for physician control. Robotic devices may provide more precise device placement assisting physicians with biopsy procedures. This work demonstrates the potential to translate the capabilities of two rapidly developing areas of medicine: volumetric imaging and robotic devices into a fully-functional clinical volume image-guided, physician-directed robotic breast biopsy system.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81588706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acoustic streaming induced by anti-symmetrical flexural modes near a wedge tip","authors":"W.-C. Wang, C. Yang, A. Yang","doi":"10.1109/ULTSYM.2010.5935857","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935857","url":null,"abstract":"Acoustic streaming (AS) is a steady fluid flow driven by the absorption of high amplitude ultrasonic vibrations due to the nonlinear effect. With potential applications in micro-pumping, the AS-related behaviors remain as interesting topics to the acoustic community. Anti-symmetric flexural (ASF) modes are wedge waves with their particle motion anti-symmetric about the apex mid-plane. With the energy tightly confined near the wedge-tip, ASF mode has relatively high acoustic amplitude which suggest it's as a good candidate for the investigation of AS. In this study, the AS behaviors induced by ASF modes are investigated by computational fluid dynamics (CFD). The ASF induced three-dimensional AS flow field are presented through the CFD analysis.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81708177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The selection of the low frequency for radial modulation imaging at 20 MHz","authors":"F. Yu, F. Villanueva, Xucai Chen","doi":"10.1109/ULTSYM.2010.5935981","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935981","url":null,"abstract":"Background: Radial modulation (RM) is a promising dual band approach for high frequency microbubble (MB) imaging. A low frequency (LF) ultrasound pulse is used to manipulate the MB radius while a synchronized high frequency (HF) pulse successively measures MB backscatter in compressed and expanded states. RM signal amplitude has been shown to increase with LF signal amplitude, but is ultimately limited by the infiltration of LF harmonics into the HF bandwidth at higher LF pressure. The ideal LF for maximizing RM signal remains controversial, and frequencies at and below resonance have been reported. This study was designed to investigate the modulation frequency and amplitude that maximize RM signal. Methods: Lipid-encapsulated perfluorocarbon MB (3.54 ± 1.76 µm) were circulated in a 6 mm diameter cellulose tube. A 20 MHz single element transducer was concentrically housed in the center of hollow 1 and 2.25 MHz transducers and the resulting confocal pressure fields were calibrated with a hydrophone. During insonation of the circulating MB, 50 independent HF line pairs were recorded while varying LF pressure from 0.02 to 0.4 mechanical index (MI). The RM signal was defined as the mean HF backscatter power difference between the low and high pressure phases of the modulating LF, normalized by the high pressure HF backscatter power. Radio-frequency signal and spectra were also analyzed for LF harmonics. Results: Simulation and experimental data for this MB suspension both predicted higher RM at resonance frequency for the same MI. However, our experimental data demonstrate that the RM reaches a 60% maximum that is the same for both frequencies and is reached at 0.1 < MI < 0.15. This plateau just precedes the appearance of LF harmonics in the HF bandwidth when MI > 0.15. Also, we show that RM allows high resolution single MB specific imaging with very efficient tissue suppression. Conclusions: Our results suggest that a MI in the 0.1–0.15 range produced the same maximal RM amplitude in the studied MB population for both LF studied. LF harmonics were negligible at these pressure levels. These findings should help with the development of high frequency molecular imaging.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81950171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Automated dealiasing and denoising for color Doppler imaging","authors":"S. Muth, Sarah Dort, Damien Garcia","doi":"10.1109/ULTSYM.2010.5935818","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935818","url":null,"abstract":"Color Doppler imaging (CDI) is the most widespread technique to analyze blood flow in clinical practice. In the prospect of producing new CDI-based tools, we developed a fast unsupervised denoiser and dealiaser (DeAN) algorithm for color Doppler raw data. The proposed technique uses robust and automated image post-processing techniques that make the DeAN clinically compliant. The DeAN includes three consecutive advanced and hands-off numerical tools: 1) a statistical region merging segmentation, 2) a recursive dealiasing process, and 3) a regularized robust smoothing. The performance of the DeAN was evaluated using Monte-Carlo simulations on mock Doppler data corrupted by aliasing and Gaussian noise with velocity-dependent variance. Clinical color Doppler images acquired with a Vivid 7 scanner were also analyzed. The analytical study demonstrated that color Doppler data can be reconstructed with high accuracy despite the presence of strong corruption. The normalized RMS error on the numerical data was less than 8% even with signal-to-noise ratio (SNR) as low as 10 dB. The algorithm also allowed us to recover reliable Doppler flows in clinical data. The DeAN is extremely fast, accurate and not observer-dependent. Preliminary results showed that it is also directly applicable to 3-D data. This will offer the possibility of developing new tools to better decipher the blood flow dynamics in cardiovascular diseases.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85127226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Eisenbrey, J. Dave, D. Merton, J. Palazzo, A. Hall, F. Forsberg
{"title":"Breast lesion characterization by parametric imaging of subharmonic signals from ultrasound contrast agents","authors":"J. Eisenbrey, J. Dave, D. Merton, J. Palazzo, A. Hall, F. Forsberg","doi":"10.1109/ULTSYM.2010.5935784","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935784","url":null,"abstract":"Parametric imaging of contrast media perfusion in breast lesions may be a useful tool in determining malignancy and grade of suspected breast tumors. Traditional ultrasound contrast modes have applied this technique, but they often suffer from reduced blood-to-tissue signal due to the tissue's ability to express signal at the transmit and higher harmonic frequencies. Alternatively, it has been shown that imaging at the subharmonic frequency (transmit at f0, receive at f0/2) results in near complete tissue signal suppression. In this regard, parametric subharmonic imaging (SHI) may be an ideal tool for breast lesion characterization, because the signal is generated almost exclusively by contrast microbubbles within the vasculature. In this study, we examined the ability of parametric SHI to characterize breast lesions. Digital SHI clips of 16 breast lesions from 14 women were acquired during contrast injection and used to generate parametric maps of cumulative maximum intensity (CMI), time to peak (TTP), estimated perfusion (EP) and area under the time-intensity curve (AUC). No significant variations were detected with CMI (p = 0.80), TTP (p = 0.35) or AUC (p = 0.65), while a statistically significant variation was detected for the average pixel EP (p = 0.002). While our initial sample size is limited, preliminary results indicate parametric SHI may be a useful tool for breast lesion characterization.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76714612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Streeter, R. Gessner, J. Tsuruta, S. Feingold, I. Guracar, P. Dayton
{"title":"Three dimensional ultrasonic molecular imaging of angiogenesis","authors":"J. Streeter, R. Gessner, J. Tsuruta, S. Feingold, I. Guracar, P. Dayton","doi":"10.1109/ULTSYM.2010.5935781","DOIUrl":"https://doi.org/10.1109/ULTSYM.2010.5935781","url":null,"abstract":"Ultrasonic (US) molecular imaging (MI) relies on microbubble contrast agents (MCAs) adhering to ligand-specific biomarkers for characterizing diseased tissue in applications such as tumor angiogenesis. One drawback to traditional 2D US MI methods is the inability to completely characterize the three-dimensional (3D) in vivo environment. We attempt to improve targeted MCA visualization and quantification by performing US MI of tumors expressing αvβ3 in 3D space. 3D acquisitions were obtained on multiple rat fibrosarcoma tumors with a Siemens Sequoia system in CPS mode by mechanically scanning the transducer in the elevational direction across the tumor. Our US MI results show high targeting variability suggesting that individual 2D acquisitions can misrepresent more complex heterogeneous tissues. Our hypothesis is that 3D US MI will provide a more robust evaluation of disease progression than traditional methods.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81093347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}