Asaad R. Sakhel, Robert J. Ragan, William J. Mullin
{"title":"Accuracy of the Gross–Pitaevskii Equation in a Double-Well Potential","authors":"Asaad R. Sakhel, Robert J. Ragan, William J. Mullin","doi":"10.1007/s10909-024-03192-0","DOIUrl":"10.1007/s10909-024-03192-0","url":null,"abstract":"<div><p>The Gross–Pitaevskii equation (GPE) in a double-well potential produces solutions that break the symmetry of the underlying non-interacting Hamiltonian, i.e., asymmetric solutions. The GPE is derived from the more general second-quantized Fock Schr<span>(ddot{textrm{o}})</span>dinger equation (FSE). We investigate whether such solutions appear in the more general case or are artifacts of the GPE. We use two-mode analyses for a variational treatment of the GPE and to treat the Fock equation. An exact diagonalization of the FSE in dual condensates yields degenerate ground states that are very accurately fitted by phase-state representations of the degenerate asymmetric states found in the GPE. The superposition of degenerate asymmetrical states forms a cat state. An alternative form of cat state results from a change of the two-mode basis set.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H.S. Lim, J. S. Chung, H.S. Jo, H.B. Kim, H. L. Kim, Y.H. Kim, W. T. Kim, D. H. Kwon, D. Y. Lee, Y. C. Lee, K.R. Woo
{"title":"An Analysis Method of Heat and Light Detection with Scintillating Crystals","authors":"H.S. Lim, J. S. Chung, H.S. Jo, H.B. Kim, H. L. Kim, Y.H. Kim, W. T. Kim, D. H. Kwon, D. Y. Lee, Y. C. Lee, K.R. Woo","doi":"10.1007/s10909-024-03191-1","DOIUrl":"10.1007/s10909-024-03191-1","url":null,"abstract":"<div><p>We present an analysis method for determining signal amplitudes using a least squares method in combination with an optimally selected bandpass filter. This method has been developed to process heat and light signals obtained in the AMoRE-I experiment. We apply Butterworth filters with various combinations of passbands and filter orders to both the heat and light signals. Subsequently, we employ the least squares method to calculate signal amplitudes by comparing each signal template for the heat and light channels. Optimal filter conditions are identified to achieve the best resolution value. In this paper, we provide a detailed description of the signal processing approach, comparing it with the optimal filter method.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kelvin–Helmholtz Instability in (^3)He Superfluids in Zero-Temperature Limit","authors":"V. B. Eltsov, J. J. Hosio, M. Krusius","doi":"10.1007/s10909-024-03189-9","DOIUrl":"10.1007/s10909-024-03189-9","url":null,"abstract":"<div><p>In rotating <span>(^3)</span>He superfluids, the Kelvin–Helmholtz (KH) instability of the AB interface has been found to follow the theoretical model above <span>(0.4 , T_textrm{c})</span>. A deviation from this dependence has been assumed possible at the lowest temperatures. Our NMR and thermal bolometer measurements down to <span>(0.2 , T_textrm{c})</span> show that the critical KH rotation velocity follows the extrapolation from higher temperatures. We interpret this to mean that the KH instability is a bulk phenomenon and is not compromised by interactions with the wall of the rotating container, although weak pinning of the interface to the wall is observed during slow sweeping of the magnetic field. The KH measurement provides the only so far existing determination of the interfacial surface tension at temperatures down to <span>(0.2 , T_textrm{c})</span> as a function of pressure.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03189-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Practical Investigations of Wireless Multiple-Power Charging Unit for Electron Quench Detection Device in the Super High Field Superconducting Magnet","authors":"Yoon Do Chung, Yong Chu, Jiseong Kim","doi":"10.1007/s10909-024-03187-x","DOIUrl":"10.1007/s10909-024-03187-x","url":null,"abstract":"<div><p>A rapid and reliable quench detection is vital for high current superconducting magnet system to prevent irreversible damage to a magnet by the quench phenomenon. The method for detecting the occurrence of a resistive transition has been widely adopted in the superconducting magnet. In the case of the voltage monitoring by means of dedicated taps, the electron quench detection device (EQDD) conversion unit, which converts detected high voltages into voltage-drop signal, should be required in the superconducting high field magnet. The power source of traditional quench detecting system, which can monitor for superconducting magnet with middle power operation, is supplied through the power transformer since the transformer can provide galvanic isolation between circuits. On the other hand, in the case of the super high magnet systems such as Korea Superconducting Tokamak Advanced Research and International Thermonuclear experimental reactor, since the maximum operation current and voltage of the super high field magnet keep over 60 kA and 50 kV DC, a passive component, which has strong an isolation device and high dielectric resistor qualities, has been required in the super high field magnet. If the power transformer is adopted in the super high field magnet, it can cause high cost for volume capacity since it needs for higher dielectric resistance value over 500 MΩ. Authors proposed the wireless resonance antenna and multi-receiver coils which can keep high level of dielectric resistance value with stability. As well as, the wireless power charging unit can reduce system volume due to multi-charging receivers for one antenna. In this study, authors investigated the effect of inserted resonator (Sx) coil between antenna and receiver coils, as well as, evaluated the electric field and magnetic field among the resonance coils under 300 W 370 kHz RF power generator since the strong electro-magnetic fields by the resonance coils can affect the electron devices inside of the EQDD module.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tasuku Hayashi, Rikuta Miyagawa, Yuta Yagi, Keita Tanaka, Ryo Ota, Noriko Y. Yamasaki, Kazuhisa Mitsuda, Keisuke Maehata, Toru Hara
{"title":"Design and Development of a 224-pixel TES X-Ray Microcalorimeter System for Microanalysis with STEM","authors":"Tasuku Hayashi, Rikuta Miyagawa, Yuta Yagi, Keita Tanaka, Ryo Ota, Noriko Y. Yamasaki, Kazuhisa Mitsuda, Keisuke Maehata, Toru Hara","doi":"10.1007/s10909-024-03175-1","DOIUrl":"10.1007/s10909-024-03175-1","url":null,"abstract":"<div><p>Studies of astromaterials provide valuable insights into the formation and evolution of the solar system. To analyze such astromaterials on a sub-micrometer scale, one of the most useful tools is energy-dispersive X-ray spectroscopy (EDS) in conjunction with scanning transmission electron microscope (STEM). The conventional semiconductor-based EDS system is sometimes insufficient to resolve emission lines at closely adjacent energies. A transition edge sensor (TES) X-ray microcalorimeter is a promising solution to overcome this problem. We developed a 64-pixel TES X-ray microcalorimeter array which had an energy resolution of approximately 7 eV (FWHM) at an energy band from B Kα to Cu Kα. However, the counting rate was only approximately 1000 count/s/array. The distance between the detector and the sample is 30 cm, limited by the stage of the refrigerator. Therefore, an X-ray polycapillary is used to focus the X-ray, which focus size is 5 mm in diameter, resulting in a detection efficiency of only 5%. To increase the effective area, we developed a large size absorber with a large-scale array. A three-dimensional structure was created to fill the dead space between TES pixels. Additionally, an array of 224 elements was made to increase the detection efficiency by a factor of 10. In this paper, we provide more details of design, fabrication process of the overhang absorber, and device performance.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical Studies on Off-Axis Phase Diagrams and Knight Shifts in UTe(_2): Tetra-Critical Point, d-Vector Rotation, and Multiple Phases","authors":"Kazushige Machida","doi":"10.1007/s10909-024-03181-3","DOIUrl":"10.1007/s10909-024-03181-3","url":null,"abstract":"<div><p>Inspired by recent remarkable sets of experiments on UTe<span>(_2)</span>: discoveries of the fourth horizontal internal transition line running toward a tetra-critical point (TCP) at <i>H</i> = 15 T, the off-axis high-field phases, and abnormally large Knight shift (KS) drop below <span>(T_textrm{c})</span> for <span>(H parallel a)</span>-magnetic easy axis, we advance further our theoretical work on the field (<i>H</i>)-temperature (<i>T</i>) phase diagram for <span>(H parallel b)</span>-magnetic hard axis which contains a positive sloped <span>(H_textrm{c2})</span> departing from TCP. A nonunitary spin-triplet pairing with three components explains these experimental facts simultaneously and consistently by assuming that the underlying normal electron system with a narrow bandwidth characteristic to the Kondo temperature <span>(sim)</span>30 K unsurprisingly breaks the particle-hole symmetry. This causes a special invariant term in Ginzburg–Landau (GL) free energy functional which couples directly with the 5f magnetic system, giving rise to the <span>(T_textrm{c})</span> splitting and ultimately to the positive sloped <span>(H_textrm{c2})</span> and the horizontal internal transition line connected to TCP. The large KS drop can be understood in terms of this GL invariance whose coefficient is negative and leads to a diamagnetic response where the Cooper pair spin is antiparallel to the applied field direction. The present scenario also accounts for the observed d-vector rotation phenomena and off-axis phase diagrams with extremely high <span>(H_textrm{c2})</span> <span>(gtrsim)</span>70 T found at angles in between the <i>b</i>- and <i>c</i>-axes and between the <i>bc</i>-plane and <i>a</i>-axis, making UTe<span>(_2)</span> a fertile playground for a possible topological superconductor.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03181-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Gor’kov–Teitel’baum Thermal Activation Model for Cuprates: A Review","authors":"Navinder Singh","doi":"10.1007/s10909-024-03188-w","DOIUrl":"10.1007/s10909-024-03188-w","url":null,"abstract":"<div><p>While closing their famous paper entitled “Pseudogap: friend or foe of high-Tc?” Norman, Pines, and Kallin underlined that before we have a microscopic theory, we must have a consistent phenomenology. This was in 2005. As it turns out in 2006, a phenomenological theory of the pseudogap state was proposed by Gor’kov and Teitel’baum. This originated from their careful analysis of the Hall effect data, and it has been very successful model as numerous investigations over the years have shown. In this mini-review, the essence of the idea of Gor’kov and Teitel’baum is presented. The pseudogap obtained by them from the Hall effect data agrees very well with that obtained from the ARPES data. This famous Gor’kov–Teitel’baum thermal activation model (in short GTTA model) not only presents a consistent phenomenology of the pseudogap state, but also rationalizes the Hall angle data, and it presents a strong case against the famous “two-relaxation times” idea of Anderson and collaborators.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. W. Song, S. G. Kim, H. S. Kim, H. J. Kim, M. K. Lee
{"title":"Modification of the Metallic Magnetic Calorimeter Fabrication Process for High Production Yield","authors":"J. W. Song, S. G. Kim, H. S. Kim, H. J. Kim, M. K. Lee","doi":"10.1007/s10909-024-03178-y","DOIUrl":"https://doi.org/10.1007/s10909-024-03178-y","url":null,"abstract":"<p>We have modified the fabrication processes of metallic magnetic calorimeters (MMCs) to improve production yield. Key modifications include (i) the stress mitigation of the sputtered Nb film by optimizing the Argon deposition gas pressure, (ii) an optimized SiO<span>(_{hbox {x}})</span> insulator layer fabrication by switching from a lift-off to a wet-etching method and controlling the optimizing the temperature, (iii) the joint electroplating of thick gold structures for persistent current switch leads and a thermalization layer, and (iv) a reduced sputter-deposition time of the Ag:Er sensor material by introducing a new wafer holder. These modifications contribute to increased production yield, reduced fabrication time, and enhanced overall performance. Tests on MMCs fabricated with these modifications demonstrated uniformly improved critical current of the Nb meander coils, enhanced SiO<span>(_{hbox {x}})</span> insulation properties, strengthened persistent current switch systems, and reduced probability of Ag:Er oxidation. These modified MMC detectors also functioned well in tests for alpha spectrometry measurements, demonstrating good performance.</p>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Annealing Effects and Insulator-to-Metal Transition in Nb Doped Sr2IrO4","authors":"Hui Huang, Bingzheng Wang, Senlin Zhao, Hui Han, Junfeng Wang, Hao Zu","doi":"10.1007/s10909-024-03186-y","DOIUrl":"10.1007/s10909-024-03186-y","url":null,"abstract":"<div><p>The effects of vacuum and oxygen annealing on Sr<sub>2-x</sub>Nb<sub>x</sub>IrO<sub>4</sub> samples have been systematically investigated. The annealing under vacuum leads to an enhanced insulating state of the Sr<sub>2-x</sub>Nb<sub>x</sub>IrO<sub>4</sub> compounds, which could be due to the evaporation of oxygen atoms which breaks the superexchange interaction between Ir and O ions. The annealing under oxygen atmosphere results in substantial straightening of the in-plane Ir–O–Ir bond and rapid depression of the canted antiferromagnetic ordering state. Importantly, the insulator-to-metal transition has been achieved by oxygen annealing of the Sr<sub>2-x</sub>Nb<sub>x</sub>IrO<sub>4</sub> samples, which could be due to the enhanced hybridization of Ir 5<i>d</i> orbitals with the neighboring O 2<i>p</i> orbitals. The present results suggest that the annealing treatment could be an effective way for exploring of novel physical phenomena in Sr<sub>2</sub>IrO<sub>4</sub> and related compounds.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141567381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soren Ormseth, Peter Timbie, David Harrison, Robert McDermott, Emily Barrentine, Thomas Stevenson, Eric Switzer, Carrie Volpert
{"title":"Quasiparticle Cooling, Scattering, and Diffusion Simulations in 1D","authors":"Soren Ormseth, Peter Timbie, David Harrison, Robert McDermott, Emily Barrentine, Thomas Stevenson, Eric Switzer, Carrie Volpert","doi":"10.1007/s10909-024-03179-x","DOIUrl":"https://doi.org/10.1007/s10909-024-03179-x","url":null,"abstract":"<p>Kinetic Inductance Detectors (KIDs) are an emerging technology useful for a wide variety of astronomy applications, including the Habitable Exoplanet Imaging Mission (HabEx), the Origins Space Telescope (OST), the Probe of Inflation and Cosmic Origins (PICO), and more. KIDs operate at cryogenic temperatures and can detect photons with high accuracy, sensitivity, and over a wide range of wavelengths. Though many KID models describe their performance well under certain operating conditions, some important pieces of physics related to quasiparticle dynamics are not yet either well understood or integrated into these models and can strongly affect device performance. In this paper we describe our framework for building an extended KID model, present the results of a quasiparticle diffusion simulation that incorporates scattering, cooling and diffusion, and discuss plans for the experimental testing of the model. We also discuss additional features to be added into future models that aim to capture a wide variety of potential scenarios encountered by researchers.\u0000</p>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}