An Improved Infinite Time-Evolving Block Decimation Algorithm Applied to SU(N) Antiferromagnetic Heisenberg Chains

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Jianjin Lin, Junjun Xu
{"title":"An Improved Infinite Time-Evolving Block Decimation Algorithm Applied to SU(N) Antiferromagnetic Heisenberg Chains","authors":"Jianjin Lin,&nbsp;Junjun Xu","doi":"10.1007/s10909-024-03248-1","DOIUrl":null,"url":null,"abstract":"<div><p>The infinite time-evolving block decimation (iTEBD) algorithm provides an efficient way to search for the ground state of a one-dimensional lattice system with translational invariance at the thermodynamic limit, especially for systems with limited entanglement. However, for systems with large on-site physical degrees of freedom, especially for the antiferromagnetic Heisenberg (AFH) chain with SU(<i>N</i>) symmetries, the decompositions in the iTEBD calculation become extremely heavy, even for a small virtual bond dimension. In this work, we consider a revised low-rank approximation by Monte Carlo sampling in the decomposition process. Our results show that compared to the original iTEBD algorithm, the proposed algorithm achieves faster convergence with comparable accuracy. Based on this algorithm, we calculate the ground state energy of the SU(3) AFH model with representation <span>\\(\\varvec{10}\\)</span> and find evidence that the ground state belongs to a trivial symmetry-protected topological phase.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"218 3-4","pages":"245 - 257"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03248-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The infinite time-evolving block decimation (iTEBD) algorithm provides an efficient way to search for the ground state of a one-dimensional lattice system with translational invariance at the thermodynamic limit, especially for systems with limited entanglement. However, for systems with large on-site physical degrees of freedom, especially for the antiferromagnetic Heisenberg (AFH) chain with SU(N) symmetries, the decompositions in the iTEBD calculation become extremely heavy, even for a small virtual bond dimension. In this work, we consider a revised low-rank approximation by Monte Carlo sampling in the decomposition process. Our results show that compared to the original iTEBD algorithm, the proposed algorithm achieves faster convergence with comparable accuracy. Based on this algorithm, we calculate the ground state energy of the SU(3) AFH model with representation \(\varvec{10}\) and find evidence that the ground state belongs to a trivial symmetry-protected topological phase.

Abstract Image

无限时间演化分块分解(iTEBD)算法为在热力学极限寻找具有平移不变性的一维晶格系统的基态提供了一种有效的方法,特别是对于纠缠有限的系统。然而,对于具有较大现场物理自由度的系统,尤其是具有苏(N)对称性的反铁磁海森堡(AFH)链,iTEBD 计算中的分解变得极其繁重,即使对于较小的虚键维度也是如此。在这项工作中,我们考虑在分解过程中通过蒙特卡罗采样修正低阶近似。我们的结果表明,与原始 iTEBD 算法相比,所提出的算法收敛速度更快,精度相当。基于该算法,我们计算了具有表示 \(\varvec{10}\) 的 SU(3) AFH 模型的基态能量,并发现基态属于琐碎对称保护拓扑相的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信