S. Isono, T. Satake, T. Hyakushima, K. Taki, R. Sakaida, S. Kishimura, S. Hirao, K. Nomura, N. Torazawa, M. Tsutsue, T. Ueda
{"title":"A 0.9 µm pixel size image sensor realized by introducing organic photoconductive film into the BEOL process","authors":"S. Isono, T. Satake, T. Hyakushima, K. Taki, R. Sakaida, S. Kishimura, S. Hirao, K. Nomura, N. Torazawa, M. Tsutsue, T. Ueda","doi":"10.1109/IITC.2013.6615587","DOIUrl":"https://doi.org/10.1109/IITC.2013.6615587","url":null,"abstract":"A stacked image sensor with a 0.9 μm pixel size fabricated by using organic photoconductive film (OPF) was realized. It is the first trial to introduce an active material, that is, an organic semiconductor into the BEOL process. This pixel structure is fabricated by using a standard 45 nm BEOL process. However, after OPF deposition, it is essential to restrict the thermal budget and to avoid oxygen, moisture, and plasma irradiation. By controlling the above conditions, a demonstration of a stacked image sensor with OPF, which has high sensitivity, high saturation charge, and a wide incident light angle, was successfully performed.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"51 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78546880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling of interconnect stress evolution during BEOL process and packaging","authors":"Chirag Shah, A. Karmarkar, Xiaopeng Xu","doi":"10.1109/IITC.2013.6615558","DOIUrl":"https://doi.org/10.1109/IITC.2013.6615558","url":null,"abstract":"A novel simulation approach is developed to examine the stress evolution in the chip-to-package interconnect structures during the sequential IC Backend processes followed by packaging / assembly operation. Packaging induced stress in near-bump and BEOL level models is examined using the multi-level FEA methodology. Likewise, the Backend process induced stresses in the interconnect structures is analyzed using a sequential process simulation that looks into stress evolution of the BEOL structure as each metal-dielectric layer is being patterned. Finally, the cumulative impact of packaging induced stress and the BEOL process induced stress on the interconnect structures is examined to demonstrate the significance of this approach in performing a “design dependent” CPI risk analysis for BEOL interconnects.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"374 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80540375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Mourier, C. Ribiére, G. Romero, M. Gottardi, N. Allouti, R. Eleouet, A. Roman, T. Magis, S. Minoret, C. Ratin, D. Scevola, E. Dupuy, B. Martin, L. Gabette, D. Marseilhan, T. Enot, M. Pellat, V. Loup, R. Segaud, H. Feldis, A. Charpentier, J. Bally, M. Assous, I. Charbonnier, C. Laviron, P. Coudrain, N. Sillon
{"title":"3D Integration challenges today from technological toolbox to industrial prototypes","authors":"T. Mourier, C. Ribiére, G. Romero, M. Gottardi, N. Allouti, R. Eleouet, A. Roman, T. Magis, S. Minoret, C. Ratin, D. Scevola, E. Dupuy, B. Martin, L. Gabette, D. Marseilhan, T. Enot, M. Pellat, V. Loup, R. Segaud, H. Feldis, A. Charpentier, J. Bally, M. Assous, I. Charbonnier, C. Laviron, P. Coudrain, N. Sillon","doi":"10.1109/IITC.2013.6615598","DOIUrl":"https://doi.org/10.1109/IITC.2013.6615598","url":null,"abstract":"3D integration, also referred as “More than Moore” approach is considered as the most attractive alternative to “More Moore” concept in order to increase circuit functionalities and performances while keeping reasonable cost of integrated devices. This technology has been widely presented and discussed during last years and is now available on several world wide integration platforms. Major part of the work done in recent years was focused on the three challenges to be overcome to allow manufacturing of 3D technology: design, process integration and tests. This was presented [1] as the availability of a complete toolbox including the design kit definition, the development and maturity increasing of the required process modules such as TSV, Wafer bonding and debonding, back side contact, both side interconnects and the definition of functional and reliability tests. This toolbox is dedicated to the construction of specific process flows and designs depending on the targeted applications. These applications, in the 3D integration world, are very flexible going from the passive and active interposers to memory on logic or logic on logic partitioning as well as stackable processors. Today, the different process modules are at a sufficient maturity state to allow the realization of demonstrators for all types of integration schemes. Depending on the type of integration flow and requested device, challenges to perform this demonstrator can come from the process integration itself but also from the need of specific equipment toolset. Base wafers already containing devices for 3D demonstrator can come from various site and be of different size. The demonstrator can be fully realized from bulk silicon as it is the case for an interposer or the 3D part of the device, only, will have to be developed which will be the case for heterogeneous integration. For this, a new 300 mm pilot line was built in Leti in addition to the 200 mm one and was designed to be compatible with manufacturing lines. These facilities are today allowing the realization of 300 mm 3D demonstrators. Results of these prototypes and the challenges overcome for integration are discussed in this paper.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"23 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82528498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Rahman, J. Schulz, R. Grenier, K. Chanda, M. Lee, D. Ratakonda, H. Shi, Z. Li, K. Chandrasekar, J. Xie, D. Ibbotson
{"title":"Interconnection requirements and multi-die integration for FPGAs","authors":"A. Rahman, J. Schulz, R. Grenier, K. Chanda, M. Lee, D. Ratakonda, H. Shi, Z. Li, K. Chandrasekar, J. Xie, D. Ibbotson","doi":"10.1109/IITC.2013.6615596","DOIUrl":"https://doi.org/10.1109/IITC.2013.6615596","url":null,"abstract":"Die stacking technology with high-density interconnect is enabling new product architectures and capabilities. Silicon interposer based stacking with through silicon via (TSV) has gained traction for high-performance applications. Some of the challenges in manufacturing technology, supply-chain strategy, design tools and infrastructure are being addressed to enable broader technology adoption. This paper provides an overview of Field Programmable Gate Array (FPGA) application trends which are driving the need for advanced die-stacking technologies. We present design and manufacturing considerations for stacking technologies and highlight lessons learned from a recent technology demonstration vehicle.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"47 2 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84808781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natsuki Fukuda, Kazunori Fukuju, Y. Nishioka, K. Suu
{"title":"Development of sputtering technology of Ta2O5/TaOx stacked film for ReRAM mass-production","authors":"Natsuki Fukuda, Kazunori Fukuju, Y. Nishioka, K. Suu","doi":"10.1109/IITC.2013.6615582","DOIUrl":"https://doi.org/10.1109/IITC.2013.6615582","url":null,"abstract":"This paper deals with development of sputtering technology of Ta<sub>2</sub>O<sub>5</sub>/TaO<sub>x</sub> stacked film for ReRAM mass-production. Thickness of TaO<sub>x</sub> film deposited by sputtering process is possible to obtain with good uniformity. However, if a high deposition rate is required for mass production, it is very difficult to obtain good controllability and uniformity of TaO<sub>x</sub> film. These problems affect the switching characteristics of the ReRAM. In order to solve these problems, sputtering tool and process for ReRAM mass-production are developed. We report the result of TaO<sub>x</sub> film with good resistance uniformity and controllability and deposition stability without low deposition rate. Moreover, switching characteristics of Pt/Ta<sub>2</sub>O<sub>5</sub>/TaO<sub>x</sub>/Pt-ReRAM-cells are evaluated.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"16 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2013-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79234120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}