Journal of High Energy Physics最新文献

筛选
英文 中文
Nonabelian anyon condensation in 2+1d topological orders: A string-net model realization 2+1d拓扑序中的非abel任意子凝聚:一个弦网模型的实现
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-20 DOI: 10.1007/JHEP05(2025)156
Yu Zhao, Yidun Wan
{"title":"Nonabelian anyon condensation in 2+1d topological orders: A string-net model realization","authors":"Yu Zhao,&nbsp;Yidun Wan","doi":"10.1007/JHEP05(2025)156","DOIUrl":"10.1007/JHEP05(2025)156","url":null,"abstract":"<p>We develop a comprehensive framework for realizing anyon condensation of topological orders within the string-net model by constructing a Hamiltonian that bridges the parent string-net model before and the child string-net model after anyon condensation. Our approach classifies all possible types of bosonic anyon condensation in any parent string-net model and identifies the basic degrees of freedom in the corresponding child models. The Kogut-Susskind lattice gauge theory model is a special case of our model if the full degrees of freedom of the model are truncated from SU(2) representations to quantum group SU(2)<sub><i>k</i></sub>. Compared with the traditional UMTC perspective of topological orders, our method offers a finer categorical description of anyon condensation at the microscopic level. We also explicitly represent relevant UMTC categorical entities characterizing anyon condensation through our model-based physical quantities, providing practical algorithms for calculating these categorical data.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)156.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144108399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous-spin particles, on shell 连续自旋粒子,在壳层上
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-20 DOI: 10.1007/JHEP05(2025)166
Brando Bellazzini, Stefano De Angelis, Marcello Romano
{"title":"Continuous-spin particles, on shell","authors":"Brando Bellazzini,&nbsp;Stefano De Angelis,&nbsp;Marcello Romano","doi":"10.1007/JHEP05(2025)166","DOIUrl":"10.1007/JHEP05(2025)166","url":null,"abstract":"<p>We study on-shell scattering amplitudes for continuous-spin particles (CSPs). Poincaré invariance, little-group ISO(2) covariance, analyticity, and on-shell factorisation (unitarity) impose stringent conditions on these amplitudes. We solve them by realizing a non-trivial representation for all little-group generators on the space of functions of bi-spinors. The three-point amplitudes are uniquely determined by matching their high-energy limit to that of definite-helicity (ordinary) massless particles. Four-point amplitudes are then bootstrapped using consistency conditions, allowing us to analyze the theory in a very transparent way, without relying on any off-shell Lagrangian formulation. We present several examples that highlight the main features of the resulting scattering amplitudes. We discuss CSP’s amplitudes as a new infrared deformation of ordinary massless amplitudes, which is controlled by the scale of the Pauli-Lubanski vector squared, as opposed to the familiar mass deformation. Finally, we explore under which conditions it is possible to relax some assumptions, such as strict on-shell factorisation, analyticity, or others. In particular, we also investigate how continuous-spin particles may couple to gravity and electromagnetism, in a loose version of <i>S</i>-matrix principles.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)166.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absence of one-loop effects on large scales from small scales in non-slow-roll dynamics 非慢滚动力学中小尺度单环效应在大尺度上的缺失
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-20 DOI: 10.1007/JHEP05(2025)162
Jacopo Fumagalli
{"title":"Absence of one-loop effects on large scales from small scales in non-slow-roll dynamics","authors":"Jacopo Fumagalli","doi":"10.1007/JHEP05(2025)162","DOIUrl":"10.1007/JHEP05(2025)162","url":null,"abstract":"<p>We question the existence of one-loop corrections to the large-scale power spectrum from small-scale modes in non-slow-roll dynamics which are not volume suppressed by the ratio of the short to long distance scales. One-loop contributions proportional to the long wavelength tree-level power spectrum, and not sharing this suppression, have appeared in studies involving interactions singled out by the non-slow-roll dynamics. In this context, we show the relevance of seemingly irrelevant interactions terms, such as the one provided by total derivative terms (boundary terms), and how they equally lead to non-volume suppressed contributions and exact cancellations.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)162.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
( mathcal{N} ) = (4, 4) supersymmetric AdS3 solutions in d = 11 ( mathcal{N} ) = (4,4) d = 11的超对称AdS3解
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-20 DOI: 10.1007/JHEP05(2025)163
Andrea Conti, Niall T. Macpherson
{"title":"( mathcal{N} ) = (4, 4) supersymmetric AdS3 solutions in d = 11","authors":"Andrea Conti,&nbsp;Niall T. Macpherson","doi":"10.1007/JHEP05(2025)163","DOIUrl":"10.1007/JHEP05(2025)163","url":null,"abstract":"<p>We derive necessary and sufficient conditions for AdS<sub>3</sub> solutions of <i>d</i> = 11 supergravity to preserve <span>( mathcal{N} )</span> = (1, 1) supersymmetry in terms of G-structures. Such solutions necessarily support an SU(3)-structure on the internal 8-manifold M<sub>8</sub>, in terms of which we phrase the conditions for supersymmetry preservation. We use this to derive the local form of all <span>( mathcal{N} )</span> = (4, 4) supersymmetric AdS<sub>3</sub> solutions in <i>d</i> = 11, for which M<sub>8</sub> decomposes as a foliation of a 3-sphere over a 5 dimensional base. There are 3 independent classes, 2 of which preserve the small superconformal algebra and one preserving its large counterpart for which M<sub>5</sub> contains a second 3-sphere. We show that for each solution with large (4, 4) supersymmetry there are two corresponding solutions with small (4, 4), one for which M<sub>5</sub> maintains its 3-sphere, one where this blows up to ℝ<sup>3</sup> which can be compactified to 𝕋<sup>3</sup>. We use our results to construct several new solutions that lie within our derived classes as well as recovering some existing solutions.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)163.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kramers-Wannier self-duality and non-invertible translation symmetry in quantum chains: a wave-function perspective 量子链中的Kramers-Wannier自对偶性和不可逆平移对称性:波函数视角
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-20 DOI: 10.1007/JHEP05(2025)157
Hua-Chen Zhang, Germán Sierra
{"title":"Kramers-Wannier self-duality and non-invertible translation symmetry in quantum chains: a wave-function perspective","authors":"Hua-Chen Zhang,&nbsp;Germán Sierra","doi":"10.1007/JHEP05(2025)157","DOIUrl":"10.1007/JHEP05(2025)157","url":null,"abstract":"<p>The Kramers-Wannier self-duality of critical quantum chains is examined from the perspective of model wave functions. We demonstrate, using the transverse-field Ising chain and the 3-state Potts chain as examples, that the symmetry operator for the Kramers-Wannier self-duality follows in a simple and direct way from a ‘generalised’ translation symmetry of the model wave function in the anyonic fusion basis. This translation operation, in turn, comprises a sequence of <i>F</i>-moves in the underlying fusion category. The symmetry operator thus obtained naturally admits the form of a matrix product operator and obeys non-invertible fusion rules. The findings reveal an intriguing connection between the (non-invertible) translation symmetry on the lattice and topological aspects of the conformal field theory describing the scaling limit.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)157.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144108401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dark matter interactions in white dwarfs: A multi-energy approach to capture mechanisms 白矮星中的暗物质相互作用:捕获机制的多能方法
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-20 DOI: 10.1007/JHEP05(2025)160
Jaime Hoefken Zink, Shihwen Hor, Maura E. Ramirez-Quezada
{"title":"Dark matter interactions in white dwarfs: A multi-energy approach to capture mechanisms","authors":"Jaime Hoefken Zink,&nbsp;Shihwen Hor,&nbsp;Maura E. Ramirez-Quezada","doi":"10.1007/JHEP05(2025)160","DOIUrl":"10.1007/JHEP05(2025)160","url":null,"abstract":"<p>White dwarfs offer a compelling avenue for probing interactions of dark matter particles, particularly in the challenging sub-GeV mass regime. The constraints derived from these celestial objects strongly depend on the existence of high dark matter densities in the corresponding regions of the Universe, where white dwarfs are observed. This implies that excluding the parameter space using local white dwarfs would present a significant challenge, primarily due to the low dark matter density in the solar neighbourhood. This limitation prompts the exploration of alternative scenarios involving dark matter particles with a diverse spectrum of kinetic energies. In this work, we investigate how these dark matter particles traverse the star, interact with stellar matter, and ultimately get captured. To accomplish this, we approximate the dark matter flux as a delta function and we assume that fermionic dark matter interacts with stellar matter either through a vector or a scalar interaction. In our computations, we consider how interactions might vary across different energy regimes, from high-energy deep inelastic scattering and inelastic scatterings via the production of <i>N</i>− and ∆− resonances to lower-energy elastic interactions with nucleons and nuclei. Our study models these inelastic resonant interactions with dark matter and vector or scalar mediators for the very first time. We provide insights into the specific conditions required for successfully boosted dark matter capture in white dwarfs. We found that, in general, dark matter capture is most likely to occur at low energies, as expected. However, in the high-energy regime, there remains a small window for capture through resonant and deep inelastic scattering processes.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)160.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144108405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charting the complex structure landscape of F-theory 描绘f理论的复杂结构景观
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-16 DOI: 10.1007/JHEP05(2025)150
Damian van de Heisteeg
{"title":"Charting the complex structure landscape of F-theory","authors":"Damian van de Heisteeg","doi":"10.1007/JHEP05(2025)150","DOIUrl":"10.1007/JHEP05(2025)150","url":null,"abstract":"<p>We explore the landscape of F-theory compactifications on Calabi-Yau fourfolds whose complex structure moduli space is the thrice-punctured sphere. As a first part, we enumerate all such Calabi-Yau fourfolds under the additional requirement that it has a large complex structure and conifold point at two of the punctures. We find 14 monodromy tuples by demanding the monodromy around infinity to be quasi-unipotent. As second part, we study the four different types of phases arising at infinity. For each we consider a working example where we determine the leading periods and other physical couplings. We also included a notebook that sets up the period vectors for any of these models.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)150.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Search for e+e− → ( {K}_S^0{K}_S^0{h}_c ) 搜索e+e−→ ( {K}_S^0{K}_S^0{h}_c )
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-16 DOI: 10.1007/JHEP05(2025)144
The BESIII collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, G. F. Fan, J. J. Fan, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, P. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, W. N. Lan, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, L. J. Li, Lei Li, M. H. Li, P. L. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, T. Li, T. Y. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, Q. M. Ma, R. Q. Ma, R. Y. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Y. H. Meng, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. R. Qi, M. Qi, S. Qian, W. B. Qian, C. F. Qiao, J. H. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, Bo Wang, C. Wang, D. Y. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, L. W. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, Lianjie Wu, X. Wu, X. H. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, W. P. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, R. J. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. X. Yang, Y. Z. Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, Ying Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. X. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, Zh. Zh. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, X. R. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, W. J. Zhu, W. Z. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu
{"title":"Search for e+e− → ( {K}_S^0{K}_S^0{h}_c )","authors":"The BESIII collaboration,&nbsp;M. Ablikim,&nbsp;M. N. Achasov,&nbsp;P. Adlarson,&nbsp;O. Afedulidis,&nbsp;X. C. Ai,&nbsp;R. Aliberti,&nbsp;A. Amoroso,&nbsp;Q. An,&nbsp;Y. Bai,&nbsp;O. Bakina,&nbsp;I. Balossino,&nbsp;Y. Ban,&nbsp;H.-R. Bao,&nbsp;V. Batozskaya,&nbsp;K. Begzsuren,&nbsp;N. Berger,&nbsp;M. Berlowski,&nbsp;M. Bertani,&nbsp;D. Bettoni,&nbsp;F. Bianchi,&nbsp;E. Bianco,&nbsp;A. Bortone,&nbsp;I. Boyko,&nbsp;R. A. Briere,&nbsp;A. Brueggemann,&nbsp;H. Cai,&nbsp;X. Cai,&nbsp;A. Calcaterra,&nbsp;G. F. Cao,&nbsp;N. Cao,&nbsp;S. A. Cetin,&nbsp;X. Y. Chai,&nbsp;J. F. Chang,&nbsp;G. R. Che,&nbsp;Y. Z. Che,&nbsp;G. Chelkov,&nbsp;C. Chen,&nbsp;C. H. Chen,&nbsp;Chao Chen,&nbsp;G. Chen,&nbsp;H. S. Chen,&nbsp;H. Y. Chen,&nbsp;M. L. Chen,&nbsp;S. J. Chen,&nbsp;S. L. Chen,&nbsp;S. M. Chen,&nbsp;T. Chen,&nbsp;X. R. Chen,&nbsp;X. T. Chen,&nbsp;Y. B. Chen,&nbsp;Y. Q. Chen,&nbsp;Z. J. Chen,&nbsp;S. K. Choi,&nbsp;G. Cibinetto,&nbsp;F. Cossio,&nbsp;J. J. Cui,&nbsp;H. L. Dai,&nbsp;J. P. Dai,&nbsp;A. Dbeyssi,&nbsp;R. E. de Boer,&nbsp;D. Dedovich,&nbsp;C. Q. Deng,&nbsp;Z. Y. Deng,&nbsp;A. Denig,&nbsp;I. Denysenko,&nbsp;M. Destefanis,&nbsp;F. De Mori,&nbsp;B. Ding,&nbsp;X. X. Ding,&nbsp;Y. Ding,&nbsp;Y. Ding,&nbsp;J. Dong,&nbsp;L. Y. Dong,&nbsp;M. Y. Dong,&nbsp;X. Dong,&nbsp;M. C. Du,&nbsp;S. X. Du,&nbsp;Y. Y. Duan,&nbsp;Z. H. Duan,&nbsp;P. Egorov,&nbsp;G. F. Fan,&nbsp;J. J. Fan,&nbsp;Y. H. Fan,&nbsp;J. Fang,&nbsp;J. Fang,&nbsp;S. S. Fang,&nbsp;W. X. Fang,&nbsp;Y. Q. Fang,&nbsp;R. Farinelli,&nbsp;L. Fava,&nbsp;F. Feldbauer,&nbsp;G. Felici,&nbsp;C. Q. Feng,&nbsp;J. H. Feng,&nbsp;Y. T. Feng,&nbsp;M. Fritsch,&nbsp;C. D. Fu,&nbsp;J. L. Fu,&nbsp;Y. W. Fu,&nbsp;H. Gao,&nbsp;X. B. Gao,&nbsp;Y. N. Gao,&nbsp;Y. N. Gao,&nbsp;Yang Gao,&nbsp;S. Garbolino,&nbsp;I. Garzia,&nbsp;P. T. Ge,&nbsp;Z. W. Ge,&nbsp;C. Geng,&nbsp;E. M. Gersabeck,&nbsp;A. Gilman,&nbsp;K. Goetzen,&nbsp;L. Gong,&nbsp;W. X. Gong,&nbsp;W. Gradl,&nbsp;S. Gramigna,&nbsp;M. Greco,&nbsp;M. H. Gu,&nbsp;Y. T. Gu,&nbsp;C. Y. Guan,&nbsp;A. Q. Guo,&nbsp;L. B. Guo,&nbsp;M. J. Guo,&nbsp;R. P. Guo,&nbsp;Y. P. Guo,&nbsp;A. Guskov,&nbsp;J. Gutierrez,&nbsp;K. L. Han,&nbsp;T. T. Han,&nbsp;F. Hanisch,&nbsp;X. Q. Hao,&nbsp;F. A. Harris,&nbsp;K. K. He,&nbsp;K. L. He,&nbsp;F. H. Heinsius,&nbsp;C. H. Heinz,&nbsp;Y. K. Heng,&nbsp;C. Herold,&nbsp;T. Holtmann,&nbsp;P. C. Hong,&nbsp;G. Y. Hou,&nbsp;X. T. Hou,&nbsp;Y. R. Hou,&nbsp;Z. L. Hou,&nbsp;B. Y. Hu,&nbsp;H. M. Hu,&nbsp;J. F. Hu,&nbsp;Q. P. Hu,&nbsp;S. L. Hu,&nbsp;T. Hu,&nbsp;Y. Hu,&nbsp;G. S. Huang,&nbsp;K. X. Huang,&nbsp;L. Q. Huang,&nbsp;P. Huang,&nbsp;X. T. Huang,&nbsp;Y. P. Huang,&nbsp;Y. S. Huang,&nbsp;T. Hussain,&nbsp;F. Hölzken,&nbsp;N. Hüsken,&nbsp;N. in der Wiesche,&nbsp;J. Jackson,&nbsp;S. Janchiv,&nbsp;Q. Ji,&nbsp;Q. P. Ji,&nbsp;W. Ji,&nbsp;X. B. Ji,&nbsp;X. L. Ji,&nbsp;Y. Y. Ji,&nbsp;X. Q. Jia,&nbsp;Z. K. Jia,&nbsp;D. Jiang,&nbsp;H. B. Jiang,&nbsp;P. C. Jiang,&nbsp;S. S. Jiang,&nbsp;T. J. Jiang,&nbsp;X. S. Jiang,&nbsp;Y. Jiang,&nbsp;J. B. Jiao,&nbsp;J. K. Jiao,&nbsp;Z. Jiao,&nbsp;S. Jin,&nbsp;Y. Jin,&nbsp;M. Q. Jing,&nbsp;X. M. Jing,&nbsp;T. Johansson,&nbsp;S. Kabana,&nbsp;N. Kalantar-Nayestanaki,&nbsp;X. L. Kang,&nbsp;X. S. Kang,&nbsp;M. Kavatsyuk,&nbsp;B. C. Ke,&nbsp;V. Khachatryan,&nbsp;A. Khoukaz,&nbsp;R. Kiuchi,&nbsp;O. B. Kolcu,&nbsp;B. Kopf,&nbsp;M. Kuessner,&nbsp;X. Kui,&nbsp;N. Kumar,&nbsp;A. Kupsc,&nbsp;W. Kühn,&nbsp;W. N. Lan,&nbsp;T. T. Lei,&nbsp;Z. H. Lei,&nbsp;M. Lellmann,&nbsp;T. Lenz,&nbsp;C. Li,&nbsp;C. Li,&nbsp;C. H. Li,&nbsp;Cheng Li,&nbsp;D. M. Li,&nbsp;F. Li,&nbsp;G. Li,&nbsp;H. B. Li,&nbsp;H. J. Li,&nbsp;H. N. Li,&nbsp;Hui Li,&nbsp;J. R. Li,&nbsp;J. S. Li,&nbsp;K. Li,&nbsp;K. L. Li,&nbsp;L. J. Li,&nbsp;Lei Li,&nbsp;M. H. Li,&nbsp;P. L. Li,&nbsp;P. R. Li,&nbsp;Q. M. Li,&nbsp;Q. X. Li,&nbsp;R. Li,&nbsp;T. Li,&nbsp;T. Y. Li,&nbsp;W. D. Li,&nbsp;W. G. Li,&nbsp;X. Li,&nbsp;X. H. Li,&nbsp;X. L. Li,&nbsp;X. Y. Li,&nbsp;X. Z. Li,&nbsp;Y. Li,&nbsp;Y. G. Li,&nbsp;Z. J. Li,&nbsp;Z. Y. Li,&nbsp;C. Liang,&nbsp;H. Liang,&nbsp;Y. F. Liang,&nbsp;Y. T. Liang,&nbsp;G. R. Liao,&nbsp;Y. P. Liao,&nbsp;J. Libby,&nbsp;A. Limphirat,&nbsp;C. C. Lin,&nbsp;C. X. Lin,&nbsp;D. X. Lin,&nbsp;T. Lin,&nbsp;B. J. Liu,&nbsp;B. X. Liu,&nbsp;C. Liu,&nbsp;C. X. Liu,&nbsp;F. Liu,&nbsp;F. H. Liu,&nbsp;Feng Liu,&nbsp;G. M. Liu,&nbsp;H. Liu,&nbsp;H. B. Liu,&nbsp;H. H. Liu,&nbsp;H. M. Liu,&nbsp;Huihui Liu,&nbsp;J. B. Liu,&nbsp;K. Liu,&nbsp;K. Y. Liu,&nbsp;Ke Liu,&nbsp;L. Liu,&nbsp;L. C. Liu,&nbsp;Lu Liu,&nbsp;M. H. Liu,&nbsp;P. L. Liu,&nbsp;Q. Liu,&nbsp;S. B. Liu,&nbsp;T. Liu,&nbsp;W. K. Liu,&nbsp;W. M. Liu,&nbsp;X. Liu,&nbsp;X. Liu,&nbsp;Y. Liu,&nbsp;Y. Liu,&nbsp;Y. B. Liu,&nbsp;Z. A. Liu,&nbsp;Z. D. Liu,&nbsp;Z. Q. Liu,&nbsp;X. C. Lou,&nbsp;F. X. Lu,&nbsp;H. J. Lu,&nbsp;J. G. Lu,&nbsp;Y. Lu,&nbsp;Y. P. Lu,&nbsp;Z. H. Lu,&nbsp;C. L. Luo,&nbsp;J. R. Luo,&nbsp;M. X. Luo,&nbsp;T. Luo,&nbsp;X. L. Luo,&nbsp;X. R. Lyu,&nbsp;Y. F. Lyu,&nbsp;F. C. Ma,&nbsp;H. Ma,&nbsp;H. L. Ma,&nbsp;J. L. Ma,&nbsp;L. L. Ma,&nbsp;L. R. Ma,&nbsp;Q. M. Ma,&nbsp;R. Q. Ma,&nbsp;R. Y. Ma,&nbsp;T. Ma,&nbsp;X. T. Ma,&nbsp;X. Y. Ma,&nbsp;Y. M. Ma,&nbsp;F. E. Maas,&nbsp;I. MacKay,&nbsp;M. Maggiora,&nbsp;S. Malde,&nbsp;Y. J. Mao,&nbsp;Z. P. Mao,&nbsp;S. Marcello,&nbsp;Y. H. Meng,&nbsp;Z. X. Meng,&nbsp;J. G. Messchendorp,&nbsp;G. Mezzadri,&nbsp;H. Miao,&nbsp;T. J. Min,&nbsp;R. E. Mitchell,&nbsp;X. H. Mo,&nbsp;B. Moses,&nbsp;N. Yu. Muchnoi,&nbsp;J. Muskalla,&nbsp;Y. Nefedov,&nbsp;F. Nerling,&nbsp;L. S. Nie,&nbsp;I. B. Nikolaev,&nbsp;Z. Ning,&nbsp;S. Nisar,&nbsp;Q. L. Niu,&nbsp;W. D. Niu,&nbsp;Y. Niu,&nbsp;S. L. Olsen,&nbsp;Q. Ouyang,&nbsp;S. Pacetti,&nbsp;X. Pan,&nbsp;Y. Pan,&nbsp;A. Pathak,&nbsp;Y. P. Pei,&nbsp;M. Pelizaeus,&nbsp;H. P. Peng,&nbsp;Y. Y. Peng,&nbsp;K. Peters,&nbsp;J. L. Ping,&nbsp;R. G. Ping,&nbsp;S. Plura,&nbsp;V. Prasad,&nbsp;F. Z. Qi,&nbsp;H. R. Qi,&nbsp;M. Qi,&nbsp;S. Qian,&nbsp;W. B. Qian,&nbsp;C. F. Qiao,&nbsp;J. H. Qiao,&nbsp;J. J. Qin,&nbsp;L. Q. Qin,&nbsp;L. Y. Qin,&nbsp;X. P. Qin,&nbsp;X. S. Qin,&nbsp;Z. H. Qin,&nbsp;J. F. Qiu,&nbsp;Z. H. Qu,&nbsp;C. F. Redmer,&nbsp;K. J. Ren,&nbsp;A. Rivetti,&nbsp;M. Rolo,&nbsp;G. Rong,&nbsp;Ch. Rosner,&nbsp;M. Q. Ruan,&nbsp;S. N. Ruan,&nbsp;N. Salone,&nbsp;A. Sarantsev,&nbsp;Y. Schelhaas,&nbsp;K. Schoenning,&nbsp;M. Scodeggio,&nbsp;K. Y. Shan,&nbsp;W. Shan,&nbsp;X. Y. Shan,&nbsp;Z. J. Shang,&nbsp;J. F. Shangguan,&nbsp;L. G. Shao,&nbsp;M. Shao,&nbsp;C. P. Shen,&nbsp;H. F. Shen,&nbsp;W. H. Shen,&nbsp;X. Y. Shen,&nbsp;B. A. Shi,&nbsp;H. Shi,&nbsp;J. L. Shi,&nbsp;J. Y. Shi,&nbsp;S. Y. Shi,&nbsp;X. Shi,&nbsp;J. J. Song,&nbsp;T. Z. Song,&nbsp;W. M. Song,&nbsp;Y. J. Song,&nbsp;Y. X. Song,&nbsp;S. Sosio,&nbsp;S. Spataro,&nbsp;F. Stieler,&nbsp;S. S Su,&nbsp;Y. J. Su,&nbsp;G. B. Sun,&nbsp;G. X. Sun,&nbsp;H. Sun,&nbsp;H. K. Sun,&nbsp;J. F. Sun,&nbsp;K. Sun,&nbsp;L. Sun,&nbsp;S. S. Sun,&nbsp;T. Sun,&nbsp;Y. J. Sun,&nbsp;Y. Z. Sun,&nbsp;Z. Q. Sun,&nbsp;Z. T. Sun,&nbsp;C. J. Tang,&nbsp;G. Y. Tang,&nbsp;J. Tang,&nbsp;M. Tang,&nbsp;Y. A. Tang,&nbsp;L. Y. Tao,&nbsp;M. Tat,&nbsp;J. X. Teng,&nbsp;V. Thoren,&nbsp;W. H. Tian,&nbsp;Y. Tian,&nbsp;Z. F. Tian,&nbsp;I. Uman,&nbsp;Y. Wan,&nbsp;S. J. Wang,&nbsp;B. Wang,&nbsp;Bo Wang,&nbsp;C. Wang,&nbsp;D. Y. Wang,&nbsp;H. J. Wang,&nbsp;J. J. Wang,&nbsp;J. P. Wang,&nbsp;K. Wang,&nbsp;L. L. Wang,&nbsp;L. W. Wang,&nbsp;M. Wang,&nbsp;N. Y. Wang,&nbsp;S. Wang,&nbsp;S. Wang,&nbsp;T. Wang,&nbsp;T. J. Wang,&nbsp;W. Wang,&nbsp;W. Wang,&nbsp;W. P. Wang,&nbsp;X. Wang,&nbsp;X. F. Wang,&nbsp;X. J. Wang,&nbsp;X. L. Wang,&nbsp;X. N. Wang,&nbsp;Y. Wang,&nbsp;Y. D. Wang,&nbsp;Y. F. Wang,&nbsp;Y. H. Wang,&nbsp;Y. L. Wang,&nbsp;Y. N. Wang,&nbsp;Y. Q. Wang,&nbsp;Yaqian Wang,&nbsp;Yi Wang,&nbsp;Z. Wang,&nbsp;Z. L. Wang,&nbsp;Z. Y. Wang,&nbsp;D. H. Wei,&nbsp;F. Weidner,&nbsp;S. P. Wen,&nbsp;Y. R. Wen,&nbsp;U. Wiedner,&nbsp;G. Wilkinson,&nbsp;M. Wolke,&nbsp;L. Wollenberg,&nbsp;C. Wu,&nbsp;J. F. Wu,&nbsp;L. H. Wu,&nbsp;L. J. Wu,&nbsp;Lianjie Wu,&nbsp;X. Wu,&nbsp;X. H. Wu,&nbsp;Y. H. Wu,&nbsp;Y. J. Wu,&nbsp;Z. Wu,&nbsp;L. Xia,&nbsp;X. M. Xian,&nbsp;B. H. Xiang,&nbsp;T. Xiang,&nbsp;D. Xiao,&nbsp;G. Y. Xiao,&nbsp;H. Xiao,&nbsp;Y. L. Xiao,&nbsp;Z. J. Xiao,&nbsp;C. Xie,&nbsp;X. H. Xie,&nbsp;Y. Xie,&nbsp;Y. G. Xie,&nbsp;Y. H. Xie,&nbsp;Z. P. Xie,&nbsp;T. Y. Xing,&nbsp;C. F. Xu,&nbsp;C. J. Xu,&nbsp;G. F. Xu,&nbsp;M. Xu,&nbsp;Q. J. Xu,&nbsp;Q. N. Xu,&nbsp;W. L. Xu,&nbsp;X. P. Xu,&nbsp;Y. Xu,&nbsp;Y. C. Xu,&nbsp;Z. S. Xu,&nbsp;F. Yan,&nbsp;L. Yan,&nbsp;W. B. Yan,&nbsp;W. C. Yan,&nbsp;W. P. Yan,&nbsp;X. Q. Yan,&nbsp;H. J. Yang,&nbsp;H. L. Yang,&nbsp;H. X. Yang,&nbsp;J. H. Yang,&nbsp;R. J. Yang,&nbsp;T. Yang,&nbsp;Y. Yang,&nbsp;Y. F. Yang,&nbsp;Y. X. Yang,&nbsp;Y. Z. Yang,&nbsp;Z. W. Yang,&nbsp;Z. P. Yao,&nbsp;M. Ye,&nbsp;M. H. Ye,&nbsp;Junhao Yin,&nbsp;Z. Y. You,&nbsp;B. X. Yu,&nbsp;C. X. Yu,&nbsp;G. Yu,&nbsp;J. S. Yu,&nbsp;M. C. Yu,&nbsp;T. Yu,&nbsp;X. D. Yu,&nbsp;C. Z. Yuan,&nbsp;J. Yuan,&nbsp;J. Yuan,&nbsp;L. Yuan,&nbsp;S. C. Yuan,&nbsp;Y. Yuan,&nbsp;Z. Y. Yuan,&nbsp;C. X. Yue,&nbsp;Ying Yue,&nbsp;A. A. Zafar,&nbsp;F. R. Zeng,&nbsp;S. H. Zeng,&nbsp;X. Zeng,&nbsp;Y. Zeng,&nbsp;Y. J. Zeng,&nbsp;Y. J. Zeng,&nbsp;X. Y. Zhai,&nbsp;Y. C. Zhai,&nbsp;Y. H. Zhan,&nbsp;A. Q. Zhang,&nbsp;B. L. Zhang,&nbsp;B. X. Zhang,&nbsp;D. H. Zhang,&nbsp;G. Y. Zhang,&nbsp;H. Zhang,&nbsp;H. Zhang,&nbsp;H. C. Zhang,&nbsp;H. H. Zhang,&nbsp;H. Q. Zhang,&nbsp;H. R. Zhang,&nbsp;H. Y. Zhang,&nbsp;J. Zhang,&nbsp;J. Zhang,&nbsp;J. J. Zhang,&nbsp;J. L. Zhang,&nbsp;J. Q. Zhang,&nbsp;J. S. Zhang,&nbsp;J. W. Zhang,&nbsp;J. X. Zhang,&nbsp;J. Y. Zhang,&nbsp;J. Z. Zhang,&nbsp;Jianyu Zhang,&nbsp;L. M. Zhang,&nbsp;Lei Zhang,&nbsp;P. Zhang,&nbsp;Q. Zhang,&nbsp;Q. Y. Zhang,&nbsp;R. Y. Zhang,&nbsp;S. H. Zhang,&nbsp;Shulei Zhang,&nbsp;X. M. Zhang,&nbsp;X. Y Zhang,&nbsp;X. Y. Zhang,&nbsp;Y. Zhang,&nbsp;Y. Zhang,&nbsp;Y. T. Zhang,&nbsp;Y. H. Zhang,&nbsp;Y. M. Zhang,&nbsp;Yan Zhang,&nbsp;Z. D. Zhang,&nbsp;Z. H. Zhang,&nbsp;Z. L. Zhang,&nbsp;Z. X. Zhang,&nbsp;Z. Y. Zhang,&nbsp;Z. Y. Zhang,&nbsp;Z. Z. Zhang,&nbsp;Zh. Zh. Zhang,&nbsp;G. Zhao,&nbsp;J. Y. Zhao,&nbsp;J. Z. Zhao,&nbsp;L. Zhao,&nbsp;Lei Zhao,&nbsp;M. G. Zhao,&nbsp;N. Zhao,&nbsp;R. P. Zhao,&nbsp;S. J. Zhao,&nbsp;Y. B. Zhao,&nbsp;Y. X. Zhao,&nbsp;Z. G. Zhao,&nbsp;A. Zhemchugov,&nbsp;B. Zheng,&nbsp;B. M. Zheng,&nbsp;J. P. Zheng,&nbsp;W. J. Zheng,&nbsp;X. R. Zheng,&nbsp;Y. H. Zheng,&nbsp;B. Zhong,&nbsp;X. Zhong,&nbsp;H. Zhou,&nbsp;J. Y. Zhou,&nbsp;S. Zhou,&nbsp;X. Zhou,&nbsp;X. K. Zhou,&nbsp;X. R. Zhou,&nbsp;X. Y. Zhou,&nbsp;Y. Z. Zhou,&nbsp;Z. C. Zhou,&nbsp;A. N. Zhu,&nbsp;J. Zhu,&nbsp;K. Zhu,&nbsp;K. J. Zhu,&nbsp;K. S. Zhu,&nbsp;L. Zhu,&nbsp;L. X. Zhu,&nbsp;S. H. Zhu,&nbsp;T. J. Zhu,&nbsp;W. D. Zhu,&nbsp;W. J. Zhu,&nbsp;W. Z. Zhu,&nbsp;Y. C. Zhu,&nbsp;Z. A. Zhu,&nbsp;J. H. Zou,&nbsp;J. Zu","doi":"10.1007/JHEP05(2025)144","DOIUrl":"10.1007/JHEP05(2025)144","url":null,"abstract":"<p>Using <i>e</i><sup>+</sup><i>e</i><sup><i>−</i></sup> collision data at 13 center-of-mass energies ranging from 4.600 to 4.951 GeV collected with the BESIII detector, we conduct the first search for the <i>e</i><sup>+</sup><i>e</i><sup><i>−</i></sup> → <span>( {K}_S^0{K}_S^0{h}_c )</span> process and investigate the resonance structures in the cross section line shape. No significant signal is observed, and the upper limits of the Born cross sections at each center-of-mass energy are presented. The ratio <span>( frac{sigma left({e}^{+}{e}^{-}to {K}_S^0{K}_S^0{h}_cright)}{sigma left({e}^{+}{e}^{-}to {K}_S^0{K}_S^0J/psi right)} )</span> is determined to be 0.15 <i>±</i> 0.22. This result indicates that if vector states exist in this energy region, their decay into <i>h</i><sub><i>c</i></sub> is significantly suppressed compared to decays into <i>J</i>/<i>ψ</i>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)144.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144091092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Freeze-in sterile neutrino dark matter in a feebly gauged B − L model 在微弱测量的B - L模型中冻结的无菌中微子暗物质
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-16 DOI: 10.1007/JHEP05(2025)147
Osamu Seto, Takashi Shimomura, Yoshiki Uchida
{"title":"Freeze-in sterile neutrino dark matter in a feebly gauged B − L model","authors":"Osamu Seto,&nbsp;Takashi Shimomura,&nbsp;Yoshiki Uchida","doi":"10.1007/JHEP05(2025)147","DOIUrl":"10.1007/JHEP05(2025)147","url":null,"abstract":"<p>We consider the gauged U(1)<sub><i>B</i>−<i>L</i></sub> model and examine the situation where the sterile neutrino is a dark matter candidate produced by the freeze-in mechanism. In our model, the dark matter <i>N</i> is mainly produced by the decay of a U(1)<sub><i>B</i>−<i>L</i></sub> breaking scalar boson <i>ϕ</i>. We point out that the on-shell production of <i>ϕ</i> through annihilation of the U(1)<sub><i>B</i>−<i>L</i></sub> gauge boson <i>Z</i><sup>′</sup> plays an important role. We find that the single production of <i>Z</i><sup>′</sup> from the gluon bath in the early Universe can become the main production modes for <i>Z</i><sup>′</sup> in some parameter regions. To prevent <i>N</i> from being overproduced, we show that the U(1)<sub><i>B</i>−<i>L</i></sub> gauge coupling constant <i>g</i><sub><i>B</i>−<i>L</i></sub> must be as small as 10<sup>−16</sup>–10<sup>−10</sup>. We also consider the case where the decay of <i>ϕ</i> into <i>N</i> is kinematically forbidden. In this case, <i>N</i> is generated by the scattering of <i>Z</i><sup>′</sup> and the <i>g</i><sub><i>B</i>−<i>L</i></sub> takes values of 10<sup>−10</sup>–10<sup>−6</sup>, which can be explored in collider experiments like FASER and SHiP.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)147.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The classical super-phaserotation infrared triangle. Classical logarithmic soft theorem as conservation law in (scalar) QED 经典的超相位旋转红外三角形。经典对数软定理作为(标量)QED中的守恒定律
IF 5.4 1区 物理与天体物理
Journal of High Energy Physics Pub Date : 2025-05-16 DOI: 10.1007/JHEP05(2025)155
Sangmin Choi, Alok Laddha, Andrea Puhm
{"title":"The classical super-phaserotation infrared triangle. Classical logarithmic soft theorem as conservation law in (scalar) QED","authors":"Sangmin Choi,&nbsp;Alok Laddha,&nbsp;Andrea Puhm","doi":"10.1007/JHEP05(2025)155","DOIUrl":"10.1007/JHEP05(2025)155","url":null,"abstract":"<p>The universality of the logarithmic soft photon theorem in four dimensions can be traced to an infinite-dimensional asymptotic symmetry which acts as a local phase rotation on matter as we have shown in [1]. Here we extend our earlier results for the charges associated to these superphaserotations to all orders in the coupling and prove that their conservation is exactly the classical logarithmic soft photon theorem discovered by Saha, Sahoo and Sen [2]. We furthermore generalize the formulae for the associated electromagnetic displacement memory and its tail from particles to scalar matter fields. This completes the classical superphaserotation infrared triangle.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)155.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信